Swinburne Research Bank
http://researchbank.swinburne.edu.au

Liu, C., Vincent, M. W., & Liu, J., et al. (2003). A virtual XML database engine for relational
databases.

Originally published in Z. Bellahsene, A. B. Chaudhri, & E. Rahm, et al. (eds.). Proceedings of
‘Database and XML technologies’, the 1st International XML Database Symposium
(XSym 2003), Berlin, Germany, 08 September 2003.

Lecture notes in computer science (Vol. 2824, pp. 37-51). Berlin: Springer.

Available from: http://dx.doi.org/10.1007/978-3-540-39429-7 3

Copyright © 2003 Springer-Verlag Berlin Heidelberg.
The original publication is available at www.springer.com.

This is the author’s version of the work. It is posted here with the permission of the publisher for
your personal use. No further distribution is permitted. If your library has a subscription to these
conference proceedings, you may also be able to access the published version via the library
catalogue.

SWIMBURME URIVERSITY
OF TECHNOLOGY

Accessed from Swinburne Research Bank: http://hdl.handle.net/1959.3/39748

A Virtual XML Database Engine for Relational
Databases

Chengfei Liu', Millist W. Vincent!, Jixue Liu®, Minyi Guo?

! University of South Australia, Adelaide, SA 5095, Australia
2 The University of Aizu, Aizu-Wakamatsu City, ukushima, 965-8580, Japan

Abstract. While XML is emerging as the universal format for publish-
ing and exchanging data on the Web, most business data is still stored
and maintained in relational DBMSs. To enable eBusiness database ap-
plications, Web access to the legacy data managed by DBMSs needs to
be provided. In this paper, we introduce a virtual XML database engine
VXE-R which allows users query a relational database via XML as if they
were accessing XML documents. Algorithms for schema transformation
and query translation in VXE-R are presented.

1 Introduction

While XML [1,4] is emerging as the universal format for publishing and ex-
changing data on the Web, most business data is still stored and maintained in
relational DBMSs. In fact, relational DBMSs will remain dominant in managing
business data in foreseeable future because of their powerful data management
services. However, relational databases are proprietary and only accessible within
an enterprise. To enable eBusiness database applications, it is important for en-
terprises to publish their relational databases as XML documents given that
XML documents are universally accessible.

A general approach to publish relational data is to create XML views of
the underlying relational data. Once XML views are created over a relational
database, there are two ways to use these views. A simple way is to materialize
the XML views by physically creating the result XML documents specified by
the views. Obviously, this may not applicable to a large view; otherwise tremen-
dous amount of spaces may be used. Maintenance of the materialized views
may also need extra computation. A better way is to support queries over XML
views. SilkRoute [7] is one of the systems taking this approach. In SilkRoute,
XML views of a relational database are defined using a relational to XML trans-
formation language called RXL, and then XML-QL queries are issued against
views. The queries and views are combined together by a query composer and
the combined RXL queries are then translated into corresponding SQL queries.
XPERANTO [5,10,11] takes a similar approach but uses XQuery [3] for user
queries.

We take a different approach. Instead of defining views based on relational
databases, we translate the underlying relational schema into equivalent XML

RParker
Rectangle

RParker
Rectangle

RParker
Rectangle

RParker
Rectangle

RParker
Rectangle

RParker
Rectangle

RParker
Rectangle

RParker
Rectangle

schema. Then XML queries are issued directly against the XML schema. Schema
mapping rules are designed to generate a normalized XML schema which bring
no data redundancy from the underlying relational schema. The translated XML
schema also preserves integrity constraints defined in a relational database schema.
It is important for users to be aware of the constraints in the XML schema
against which they are going to issue queries. In the SilkRoute and XPERANTO
approaches, users cannot see the integrity constraints buried in the relational
schema from the XML views defined. Another benifit of our proposed approach
is that the query translation process gets simplified.

In this paper, we introduce a virtual XML database engine VXE-R which
allows users query a relational database via XML as if they were accessing XML
documents. VXE-R is composed of three components. A schema translator which
translates the underlying relational schema into equivalent XML schema, a query
translator which translates the XQuery queries against XML schema into the cor-
responding SQL queries against the underlying relational schema, and an XML
document generator which converts SQL result tables into XML documents.

The rest of the paper is organized as follows. After the architecture of VXE-R
is presented in Section 2, we discuss the translation from relational schema to
XML schema in Section 3. The translation of XQuery queries to corresponding
SQL queries is described in Section 4. The XML document generator is intro-
duced in Section 5. Section 6 concludes the paper.

2 The Architecture

XQuery queries XQuery results
&ML Schema
Schema Query XML Documents
Translator Trandglator Generator
soL 1uants
RDB Schema RDBMS RDB
_/ _/

Fig. 1. Architecture of VXE-RF

The architecture of the virtual XML database engine VXE-R is shown in
Figure 1. There are three components:

— A schema translator
— A query translator
— An XML document generator

The schema translator is responsible to translate a relational database schema
into the corresponding schema in XML Schema. We choose XML Schema [6] be-
cause Data Type Definition (DTD) has a number of limitations, e.g., it is written
in a non-XML syntax; it has no support of namespaces; it only offers extremely
limited data typing. XML Schema is a more comprehensive and rigorous method
for defining content model of an XML document. The schema itself is an XML
document, and so can be processed by the same tools that read the XML docu-
ments it describes. XML Schema supports rich built-in types and allows complex
types built based on built-in types. It also supports key and unique constraints
which are important to map relational databases to XML documents.

Once an XML schema is created, user queries in XQuery can be formulated
against it. As the real data is stored in relational databases, it is the responsibil-
ity of the query translator to translate the XQuery queries into the correspond-
ing SQL queries against the underlying relational schema. The translated SQL
queries are passed to a relational DBMS for execution. XQuery [3] is chosen as
the XML query language since it is currently being standardized by the W3C.

After the execution of the translated SQL queries, the result relations are
passed to the XML document generator which generates the result XML docu-
ments for users after possible re-structuring according to the requirements spec-
ified in the XQuery queries.

In the following sections, we describe these three components in detail.

3 Schema Translation

In a relational database schema, different types of integrity constraints may be
defined, e.g., primary keys (PKs), foreign keys (FKs), null/not-null, unique, etc.
It is important to map all these constraints to the target XML schema. Also we
aim to achieve high level of nesting and to avoid introducing redundancy in the
target schema.

Basically, the null/not-null constraint can be easily represented by properly
setting minOccurs of the transformed XML element for the relation attribute.
The unique constraint can also be represented by the unique mechanism in XML
Schema straightforwardly. In the following, we first focus on the mapping of
PK/FK constraints, then we consider further on the null/not-null and unique
constraints.

XML Schema supports two mechanisms to represent identity and reference:
one is ID/IDREF while the other is KEY/KEYREF. There are differences in
using these two mechanisms. The former supports the dereference function in
path expressions in most XML query languages including XQuery, however, it
only applies to a single element /attributes. The latter may apply to multiple ele-
ments/attributes but cannot support the dereference function. For schema trans-
lation, we use ID/IDREF where possible because of the dereference function sup-
port. For this purpose, we will differentiate the single attribute primary/foreign
keys from multi-attribute primary /foreign keys while transforming the relational

database schema to XML schema. We also classify a relation into the following
four categories based on different types of primary keys:

reqular: the primary key of a regular relation contains no foreign keys.
component: the primary key of a component relation contains one foreign
key which references its parent relation. The other part of the primary key
serves as a local identifier under the parent relation. A component relation
is used to represent a component or a multi-valued attribute of its parent
relation.

supplementary: the primary key of a supplementary relation as a whole is
also a foreign key which references another relation. This relation is used
to supplement another relation or to represent a subclass for translating a
generalization hierarchy from a conceptual schema.

association: the primary key of an association relation contains more than
one foreign keys, each of which references a participant relation.

Based on above discussion, we give the set of mapping rules.

3.1 Basic Mapping Rules

Given a relational database schema Sch with primary/foreign key definitions, we
may use the following basic mapping rules to convert Sch into a corresponding
XML schema Sch-XML.

Rule 1 For a relational database schema Sch, a root element named Sch_ XML
is created in the corresponding XML schema as follows.

<xs: element name = "Sch_XML">_
<xs: complexType>_
<Xs: sequence>_
<!-- translated relation schema of Sch —-->_
</xs: sequence>_
</xs: complexType>_
</xs: element>_

Rule 2 For each regular or association relation R, the following element with
the same name as the relation schema is created and then put under the root
element.

<xs: element name = "R" minOccurs = "0" maxOccurs = "unbounded">_
<xs: complexType>_
<Xs: sequence>_
<!-- the attributes of R —->_
</xs: sequence>_
</xs: complexType>_
</xs: element>_

Rule 3 For each component relation Ry, let its parent relation be Ry, then an
element with the same name as the component relation is created and then placed
as a child element of Ro. The created element has the same structure as the
element created in Rule 2.

Rule 4 For each supplementary relation Ry, let the relation which Ry references
be Ry, then the following element with the same mame as the supplementary
relation schema is created and then placed as a child element of Ry. The created
element has the same structure as the element created in Rule 2 except that the
maxQccurs is 1.

Rule 5 For each single attribute primary key with the name A of regular
relation R, an attribute of the element for R is created with ID data type as
follows.

<xs: attribute name = "PKA" type = "xs:ID"/>_

Rule 6 For each multiple attribute primary key of a regular, a component
or an association relation R, suppose the key attributes are Ay, , KA,,
an attribute of the element for R is created for each A;(1 < i < n) with
the corresponding data type. If R is a component relation and A; is a single
attribute foreign key contained in the primary key, then the data type of the
created attribute is IDREF. After that a key element is defined with a selector

to select the element for R and several fields to identify Ay, , KA,. The
key element can be defined inside or outside the element for R. The name of the
element should be unique within the namespace.

<xs: element name = "R" minOccurs = "0" max0Occurs = "unbounded">_

<xs: complexType>_
<xs: attribute name = "PKA1l" type = "xs:PKAl_type"/>

<xs: attribute name = "PKAn" type = "xs:PKAn_type"/>_
</xs: complexType>_
<xs: key name = "PK"/>_

<xs: selector xpath = "R/"/>_

<xs: field xpath = "@PKA1"/>

<xs: field xpath = "@PKAn"/>_
</xs: key>_
</xs: element>_

Rule 7 Ignore the mapping for primary key of each supplementary relation.

Rule 8 For each single attribute foreign key A of a relation R except one
which is contained in the primary key of a component or supplementary relation,
an attribute of the element for R is created with IDREF data type.

<xs: attribute name = "FKA" type = "xs:IDREF"/>_

Rule 9 For each multiple attribute foreign key of a relation R except one
which is contained in the primary key of a component or supplementary rela-

tion, suppose references of the referenced relation, and the foreign key
attributes are 1, n, an attribute of the element for R is created for
each i(1 <i < n) with corresponding data type. Then a keyref element is
defined with a selector to select the element for R and several fields to identify

1, n- The keyref element can be defined either inside or outside
the element. The name of the element should be unique within the names-

pace and refer of the element is the name of the key element of the primary key
which it references.

<xs: element name = "R" minOccurs = "0" max0Occurs = "unbounded">_
<xs: complexType>_
<xs: attribute name = "FKA1" type = "xs:FKAl_type"/>_

<xs: attribute name = "FKAn" type = "xs:FKAn_type"/>_
</xs: complexType>_
<xs: keyref name = "FK" refer = "PK"/>_

<xs: selector xpath = "R/"/>_

<xs: field xpath = "@FKA1"/>_

<xs: field xpath = "QFKAn"/>_
</xs: keyref>_
</xs: element>_

Rule 10 For each non-key attribute of a relation R, an element is created as a
child element of R. The name of the element is the same as the attribute name.

Rule 1 to Rule 10 are relatively straitforward for mapping a relational database
schema to a corresponding XML schema. One property of these rules is redun-
dancy free preservation, i.e., Rule 1 to Rule 10 do not introduce any data redun-
dancy provided the relational schema is redundancy free.

Theorem 3.1 If the relational database schema Sch is redundancy free, the
XML schema Sch_- XML generated by applying Rule 1 to Rule 10 is also redun-
dancy free.

This theorem is easy to prove. For a regular or an association relation R,
an element with the same name R is created under the root element, so the
relation R in Sch is isomorphically transformed to an element in Sch_XML. For
a component relation R, a sub-element with the same name R is created under
its parent R,. Because of the foreign key constraint, we have the functional
dependency R — R,» i-e., there is a many to one relationship from R to
R, therefore it is impossible that a tuple of R is placed more than one time under
different element of R,. Similar to a component relation, there is no redundancy
introduced for a supplementary relation.

3.2 An Example

Let us have a look of a relational database schema Company for a company.
Primary keys are underlined while foreign keys are in italic font.
Employee(eno, name, city, salary, dno)
Dept(dno, dname, mgrEno)
DeptLoc(dno, city)
Project(pno, pname, city, dno)
WorksOn(eno, pno, hours)
Given this schema as an input, the following XML schema will be generated:

<xs:element name="Company_XML">_
<xs:complexType>_
<xs:sequence>_
<xs:element name="Employee" minOccurs="0" maxOccurs="unbounded">_
<xs:complexType>_
<xs:sequence>_
<xs:element name="name" type="xs:string"/>_
<xs:element name="city" type="xs:string"/>_
<xs:element name="salary" type="xs:int"/>_
</xs:sequence>_
<xs:attribute name="eno" type="xs:ID"/>_
<xs:attribute name="dno" type="xs:IDREF"/>_
</xs:complexType>_
</xs:element>_
<xs:element name="Dept" minOccurs="0" maxOccurs="unbounded">_
<xs:complexType>_
<xs:sequence>_
<xs:element name="dname" type="xs:string"/>_
<xs:element name="city" type="xs:string"/>_
<xs:element name="DeptLoc" minOccurs="0" maxOccurs="unbounded">_
<xs:complexType>_
<xs:attribute name="dno" type="xs:IDREF"/>_
<xs:attribute name="city" type="xs:string"/>_
</xs:complexType>_
<xs:key name="PK_DeptLoc"/>_
<xs:selector xpath="Dept/DeptLoc/"/>_
<xs:field xpath="@dno"/>_
<xs:field xpath="Q@city"/>_
</xs: key>_
</xs:element>_
</xs:sequence>_
<xs:attribute name="dno" type="xs:ID"/>_
<xs:attribute name="mgrEno" type="xs:IDREF"/>_
</xs:complexType>_
</xs:element>_
<xs:element name="Project" minOccurs="0" maxOccurs="unbounded">_
<xs:complexType>_
<xs:sequence>_
<xs:element name="pname" type="xs:string"/>_

<xs:element name="city" type="xs:string"/>
</xs:sequence>
<xs:attribute name="pno" type="xs:ID"/>
<xs:attribute name="dno" type="xs:IDREF"/>
</xs:complexType>
</xs:element>
<xs:element name="WorksOn" minQOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:element name="hours" type="xs:int"/>
<xs:attribute name="eno" type="xs:IDREF"/>
<xs:attribute name="pno" type="xs:IDREF"/>
<xs:key name="PK_WorksOn"/>
<xs:selector xpath="WorksOn/"/>
<xs:field xpath="Qeno"/>
<xs:field xpath="@pno"/>
</xs: key>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>_

The root element Company_XML is created for the relational database schema
Company. Under the root element, four set elements Employee, Dept, Project and
WorksOn are created for relation schema Employee, Dept, Project and Work-
sOn, respectively. For component relation schema DeptLoc, element DeptLoc is
created under element Dept for its parent relation. PK/FK constraints in the
relational database schema Company have been mapped to the XML schema
Company_ XML by using ID/IDREF and KEY/FEYREF.

3.3 Exploring Nested Structures

As we can see, the basic mapping rules fail to explore all possible nested struc-
tures. For example, the Project element can be moved to under the Dept element
if every project belongs to a department. Nesting is important in XML schema
because it allows navigation of path expressions to be processed efficiently. If we
use IDREF instead, we may use system supported dereference function to get
the referenced elements. In XML, the dereference function is expensive because
ID and IDREF types are value based. If we use KEYREF, we have to put an ex-
plicit join condition in an XML query to get the referenced elements. Therefore,
we need to explore all possible nested structure by investigating the referential
integrity constraints in the relational schema. For this purpose, we introduce a
reference graph as follows:

Definition 3.1 : Given a relational database schema ch = {R;, ,R,}, a
reference graph of the schema ch is defined as a labeled directed graph RG =
(V, ,L) whereV is a finite set of vertices representing relation schema Ry, , Ry

in h; is a finite set of arcs, if there is a foreigndiey defined in R; which ref-
erences Rj, an arce = R;,R; >€ ; s a set of labels for edges by applying
a labeling function from to the set of attribute names for foreign keys.

Dept

mgrEn

Employee () DeptLoc

WorksOn

Fig. 2. A Reference GraphF

The reference graph of the relational schema Company is shown as in Fig-
ure 2. In the graph, the element of node DeptLoc has been put under the element
of node Dept by Rule 3. From the graph, we may have the following improve-
ment if certain conditions are satisfied.

(1) The element of node Project could be put under the element of node Dept if
the foreign key dno is defined as NOT-NULL. This is because that node Project
only references node Dept and a many to one relationship from Project to Dept
can be derived from the foreign key constraint. In addition, the NOT-NULL
foreign key means every project has to belong one department. As a result, one
project can be put under one department and cannot be put twice under differ-
ent departments in the XML document.

(2) A loop exists between Employee and Dept. What we can get from this is
a many to many relationship between Employee and Dept. In fact, the foreign
key mgrEno of Dept reflects a one to one relationship from Dept to Employee.
Fortunately, this semantics can be captured by checking the unique constraint
defined for the foreign key mgrno. If there is such a unique constraint defined,
the foreign key mgrEno of Dept really suggests a one to one relationship from
Dept to Employee. For the purpose of nesting, we delete the arc from Dept to
Employee labelled mgrno from the reference graph. The real relationship from
Employee to Dept is many to one. As such, the element of the node Employee
can also be put under the element of the node Dept if the foreign key dno is
defined to NOT-NULL.

(3) The node WorksOn references two nodes Employee and Project. The element
of WorksOn can be put under either Employee and Project if the corresponding
foreign key is NOT-NULL. However, which node to choose to put under all de-
pends on which path will be used often in queries. We may leave this decision
to be chosen by a designer.

Based on the above discussion, we can improve the basic mapping rules by
the following theorems.

Theorem 3.2 In a reference graph RG, if a node ny for relation Ry has only
one outcoming arc to another node ns for relation Ry and foreign key denoted
by the label of the arc is defined as NOT-NULL and there is no loop between
n1 and ns, then we can move the element for Ry to under the element for R,
without introducing data redundancy.

The proof of this theorem has already explained by the relationships between
Project and Dept, and between Dept and Employee in Figure 2. The only arc
from ny to ny and there is no loop between the two nodes represents a many
to one relationship from R; to R,, while the NOT-NULL foreign key gives a
many to exact one relationship from R; to R,. Therefore, for each instance of
Ry, it is put only once under exactly one instance of Ry, no redundancy will be
introduced.

Similarly, we can have the following.

Theorem 3.3 In a reference graph RG, if a node ng for relation Ry has out-
coming arcs to other nodes ny, ,ny for relations Ry, , Ry, respectively, and
the foreign key denoted by the label of at least one such outcoming arcs is defined
as NOT-NULL and there is no loop between ng and any of ny, ,ny, then we
can move the element for Ry to under the element for R; (1 < i < k) without
introducing data redundancy provided the foreign key defined on the label of the
arc from ng to n; is NOT-NULL.

Rule 11 If there is only one many to one relationship from relation Ry to an-
other relation Ry and the foreign key of Ry to Ry is defined as NOT-NULL, then
we can move the element for Ry to under the element for Ry as a child element.

Rule 12 If there are more than one many to one relationship from relation Ry
to other relations Ry, , Ry, then we can move the element for Ry to under the
element for R; (1 <i < k) as a child element provided the foreign key of Ry to
Ry, is defined as NOT-NULL.

By many to one relationship from relation R; to Rs, we mean that there is
one arc which cannot be deleted from node n; for R; to node ny for Ry, and
there is no loop between n; and ny in the reference graph. If we apply Rule 11
to the transformed XML schema Company- XML, the elements for Project and
Employee will be moved to under Dept as follows, the attribute dno with IDREF
type can be removed from both Project and Employee elements.

<xs:element name="Dept" minOccurs="0" maxOccurs="unbounded">_
<xs:complexType>_

<Xs:sequence>_

<xs:element name="dname" type="xs:string"/>_

<xs:element name="city" type="xs:string"/>_

<xs:element name="DeptLoc" minOccurs="0" maxOccurs="unbounded">_

<xs:complexType>
<xs:attribute name="dno" type="xs:IDREF"/>
<xs:attribute name="city" type="xs:string"/>
</xs:complexType>_
<xs:key name="PK_DeptLoc"/>
<xs:selector xpath="Dept/DeptLoc/"/>
<xs:field xpath="@dno"/>
<xs:field xpath="Q@city"/>
</xs: key>
</xs:element>
<xs:element name="Project" min0Occurs="0" maxOccurs="unbounded">
<xs:complexType>_
<Xs:sequence>
<xs:element name="pname" type="xs:string"/>
<xs:element name="city" type="xs:string"/>
</xs:sequence>
<xs:attribute name="pno" type="xs:ID"/>
</xs:complexType>
</xs:element>
<xs:element name="Employee" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>_
<Xxs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="city" type="xs:string"/>
<xs:element name="salary" type="xs:int"/>
</xs:sequence>
<xs:attribute name="eno" type="xs:ID"/>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name="dno" type="xs:ID"/>
<xs:attribute name="mgrEno" type="xs:IDREF"/>
</xs:complexType>_
</xs:element>_

XML Schema offers great flexibility in modeling documents. Therefore, there
exist many ways to map a relational database schema into a schema in XML
Schema. For examples, XViews [2] constructs graph based on PK/FK relation-
ship and generate candidate views by choosing node with either maximum in-
degree or zero in-degree as root element. The candidate XML views generated
achieve high level of nesting but suffer considerable level of data redundancy.
NeT [8] derives nested structures from flat relations by repeatedly applying nest
operator on tuples of each relation. The resulting nested structures may be use-
less because the derivation is not at the type level. Compared with XViews and
NeT, our mapping rules can achieve high level of nesting for the translated XML
schema while introducing no data redundancy provided the underlying relational
schema is redundancy free.

4 Query Translation

In this section, we discuss how XQuery queries are translated to corresponding
SQL queries. SQL is used to express queries on flat relations, where a join op-
eration may be used frequently to join relations together; while XQuery is used
to express queries on elements which could be highly nested by sub-elements or
linked by IDREF, where navigation via path expression is the main means to
link elements of a document together. As XQuery is more powerful and flexible
than SQL, it is hard to translate an arbitrary XQuery query to correspond-
ing SQL query. Fortunately, in VXE-R, the XML schema is generated from the
underlying relational database schema, therefore, the structure of the mapped
XML elements is normalized. Given the mapping rules introduced in Section 3,
we know the reverse mapping which is crucial for translating queries in XQuery
to the corresponding queries in SQL.

As XQuery is still in its draft version, in this paper, we only consider the
translation of basic XQuery queries which do not include aggregate functions.
The main structure of an XQuery query can be formulated by an FLWOR expres-
sion with the help of XPath expressions. An FLWOR expression is constructed
from FOR, LET, WHERE, ORDER BY, and RETURN clauses. FOR and LET
clauses serve to bind values to one or more variables using (path) expressions.
The FOR clause is used for iteration, with each variable in FOR iterates over the
nodes returned by its respective expression; while the optional LET clause binds
a variable to an expression without iteration, resulting in a single binding for each
variable. As the LET clause is usually used to process grouping and aggregate
functions, the processing of the LET clause is not discussed here. The optional
WHERE clause specifies one or more conditions to restrict the binding-tuples
generated by FOR and LET clauses. The RETURN clause is used to specify an
element structure and to construct the result elements in the specified structure.
The optional ORDER BY clause determines the order of the result elements.

A basic XQuery query can be formulated with a simplified FLWOR, expres-
sion:

FOR x1 in pi, Xn in pn_ ,
WHERE c_
RETURN s_
In the FOR clause, iteration variables xy, ,x, are defined over the path
expressions p;, ,p,. In the WHERE clause, the expression ¢ specifies con-

ditions for qualified binding-tuples generated by the iteration variables. Some
conditions may be included in p; to select tuples iterated by the variable z;.
In the RETURN clause, the return structure is specified by the expression s.
A nested FLWOR expression can be included in s to specify a subquery over
sub-elements.

4.1 The Algorithm

Input A basic XQuery query Ququery against an XML schema Sch_ XML which
is generated from the underlying relational schema, Sch.

Output A corresponding SQL query Q4 against the relational schema Sch.
Step 1: make Qpquery canonical - Let p; defined in the FOR clause be the form
of /stepii/ /stepir. We check whether there is a test condition, say ¢;; in
step;; of p; from left to right. If there is such a step, let step;; be the form of
lij[cij], then we add an extra iteration variable y;; in the FOR clause which is
defined over the path expression /l;1/ /l;;, and move the condition ¢;; to the
WHERE clause, each element or attribute in ¢;; is prefixed with $y;;/.

Step 2: identify all relations - After Step 1, each p; in the FOR clause is now
in the form of /l;1/ /li, where [;;(1 < j < k) is an element in Sch. XML.
Usually p; corresponds to a relation in Sch (I;; matches the name of a relation
schema in Sch). The matched relation name [;; is put in the FROM clause of
Qsq followed by the iteration variable z; served as a tuple variable for relation
li. If there is an iteration variable, say x;, appears in p;, replace the occurrence
of z; with p;. Once both relations, say R; and R;, represented by p; and p;
respectively are identified, a link from R; to R; is added in a temporary list
LINK. If there are nested FLWOR expressions defined in RETURN clause, the
relation identification process is applied recursively to the FOR clause of the
nested FLWOR, expressions.

Step 3: identify all target attributes for each identified relation - All target at-
tributes of Qsq appear in the RETURN clause. For each leaf element (in the
form of $z;/t) or attribute (in the form of $2;/@t) defined in s of the RETURN
clause, replace it with a relation attribute in the form of z;.t. Each identified
target attribute is put in the SELECT clause of Q)54 . If there are nested FLWOR
expressions defined in RETURN clause, the target attribute identification pro-
cess is applied recursively to the RETURN clause of the nested FLWOR, expres-
sions.

Step 4: identify conditions - Replace each element (in the form of $z;/t) or
attribute (in the form of $z;/@t) in the WHERE clause of Qgquery, then move
all conditions to the WHERE clause of)54 with a relation attribute in the form
of z;.t. If there are nested FLWOR, expressions defined in RETURN clause, the
condition identification process is applied recursively to the WHERE clause of
the nested FLWOR expressions.

Step 5: set the links between iteration variables - If there is any link put in the
temporary list LINK, then for each link from R; to R;, create a join condition
between the foreign key attributes of R; and the corresponding primary key
attributes of R; and ANDed to the other conditions of the WHERE clause of

qul-

4.2 An Example

Suppose we want to find all departments which have office in Adelaide and we
want to list the name of those departments as well as the name and salary of
all employees who live in Adelaide and work in those departments. The XQuery
query for this request can be formulated as follows:

FOR $d in /Dept, $e in $d/Employee, $1 in $d/DeptLoc_

WHERE $1/city = "Adelaide" and_
$e/city = "Adelaide" and_
$e/@dno = $d/@dno_

RETURN_
<Dept>_

<dname> $d/dname </dname>_
<employees>_

<name> $e/name </name>_
<salary> $e/salary </salary>_
</employees>_
</Dept>_

Given this query as an input, the following SQL query will be generated:

SELECT d.dname, e.name, e.salary_
FROM Dept d, Employee e, DeptLoc 1_
WHERE 1l.city = "Adelaide" and_
e.city = "Adelaide" and_
e.dno = d.dno and_
1l.dno = d.dno_

5 XML Documents Generation

As seen from the query translation algorithm and example introduced in the
previous section, the translated SQL query takes all leaf elements or attributes
defined in an XQuery query RETURN clause and output them in a flat relation.
However, users may require a nested result structure such as the RETURN
structure defined in the example XQuery query. Therefore, when we generate
the XML result documents from the translated SQL query result relations, we
need to restructure the flat result relation by a grouping operator [9] or a nest
operator for N 2 relations, then convert it into XML documents.

Similar to SQL GROUP BY clause, the grouping operator divides a set or
list of tuples into groups according to key attributes. For instance, suppose the
translated SQL query generated from the example XQuery query returns the
following result relation as shown in Table 1. After we apply grouping on the
relation using dname as the key, we have the nested relation as shown in Table
2 which can be easily converted to the result XML document as specified in the
example XQuery query.

dname name salary dname |name salary
development| Smith, John | 70,000F development|Smith, JohnF0,000F
marketing | Mason, Lisa |60,000] Leung, Mary50,000F
development|Leung, Mary|50,000F Chen, Helenk¥70,000F
marketing | Lee, Robert |80,0001 marketing |Mason, Lisal60,000F
development|Chen, Helen | 70,000F Lee, RobertE80,000F
Table 1. Relation Example Table 2. Nesflad Relation ExampleF

6 Conclusion and Future Work

This paper introduced the architecture and components of a virtual XML database
engine VXE-R. VXE-R presents a normalized XML schema which preserves in-
tegrity constraints defined in the underlying relational database schema to users
for queries. Schema mapping rules from relational to XML Schema were dis-
cussed. The Query translation algorithm for translating basic XQuery queries
to corresponding SQL queries was presented. The main idea of XML document
generation from the SQL query results was also discussed.

We believe that VXE-R is effective and practical for accessing relational
databases via XML. In the future, we will build a prototype for VXE-R. We
will also examine the mapping rules using our formal study of the mapping from
relational database schema to XML schema in terms of functional dependencies
and multi-valued dependencies [12,13], and investigate the query translation of
complex XQuery queries and complex result XML document generation.

References

1. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to
Semistructured Data and XML. Morgan Kaufmann Publishers, 2000.F

2. C. Baru. Xviews: Xml views of relational schemas. In Proceedings of DEXA
Workshop, pages 700-705, 1999.F

3. S. Boag, D. Chamberlin amd M. ernandez, D. J. Robie, J. Simeon, andF
M. Stefanescu. XQuery 1.0: An XML Query Language, April 2002. W3C WorkingF
Draft, http://www.w3.org/TR/2002/WD-xquery-20020430/.F

4. T. Bray, J. Paoli, C. Sperberg-McQueen, and E. Maler. FEztensible Markup
Language (XML) 1.0 (Second Edition), October 2000. W3C Recommendation,F
http://www.w3.org/TR/REC-xml.F

5. M. Carey, J. Kiernan, J. Shanmugasundaram, E. Shekita, and S. Subramanian.F
Xperanto: Middleware for publishing object-relational data as xml documents. InF
Proceedings of VLDB, pages 646-648, 2000.F

6. D. allside. XML Schema Part 0: Primer, May 2001. W3C Recommendation,F
http://www.w3.org/TR/xmlschema-0/.F

7. M. ernandez, W. Tan, and D. Suciu. Silkroute: Trading between relations andF
xml. In Proceedings of WW W, pages 723-725, 2000.F

8. D. Lee, M. Mani, Chiu, and W. Chu. Nesting-based relational-to-xml schemaF
translation. In Proceedings of the WebDB, pages 61-66, 2001.F

9. J. Liu and C. Liu. A declarative way of extracting xml data in xsl. In Proceedings
of ADBIS, pages 374-387, September 2002.F

10. J. Shanmugasundaram, J. Kiernan, E. Shekita, C. an, and J. underburk. Query-
ing xml views of relational data. In Proceedings of VLDB, pages 261-270, 2001.F

11. J. Shanmugasundaram, E. Shekita, R. Barr, M. Carey, B. Lindsay, H. Pirahesh,F
and B. Reinwald. Efficiently publishing relational data as xml documents. InF
Proceedings of VLDB, pages 65-76, 2000.F

12. M. Vincent, J. Liu, and C. Liu. A redundancy free 4nf for xml. In Proceedings of
XSYM, September 2003.F

13. M. Vincent, J. Liu, and C. Liu. Redundancy free mapping from relations to xml.F
In Proceedings of WAIM, August 2003.F

lorescu,

