

 Swinburne Research Bank
 http://researchbank.swinburne.edu.au

Liu, C., Vincent, M. W., & Liu, J., et al. (2003). A virtual XML database engine for relational

databases.

Originally published in Z. Bellahsene, A. B. Chaudhri, & E. Rahm, et al. (eds.). Proceedings of
‘Database and XML technologies’, the 1st International XML Database Symposium

(XSym 2003), Berlin, Germany, 08 September 2003.
Lecture notes in computer science (Vol. 2824, pp. 37–51). Berlin: Springer.

Available from: http://dx.doi.org/10.1007/978-3-540-39429-7_3

Copyright © 2003 Springer-Verlag Berlin Heidelberg.

The original publication is available at www.springer.com.

This is the author’s version of the work. It is posted here with the permission of the publisher for
your personal use. No further distribution is permitted. If your library has a subscription to these
conference proceedings, you may also be able to access the published version via the library

catalogue.

Accessed from Swinburne Research Bank: http://hdl.handle.net/1959.3/39748

A Virtual XML Database Engine for Relational

Databases

Chengfei Liul, Millist W. Vin
entl, Jixue Liul, Minyi Guo2

� University of South Australia, Adelaide, SA 5095, Australia
� The University of Aizu, Aizu-Wakamatsu City, ukushima, 965-8580, Japan

Abstra
t. While XML is emerging as the universal format for publish-
ing and ex
hanging data on the Web, most business data is still stored
and maintained in relational DBMSs. To enable eBusiness database ap-
pli
ations, Web a

ess to the lega
y data managed by DBMSs needs to
be provided. In this paper, we introdu
e a virtual XML database engine
VXE-R whi
h allows users query a relational database via XML as if they
were a

essing XML do
uments. Algorithms for s
hema transformation
and query translation in VXE-R are presented.

1 Introdu
tion

While XML [1, 4] is emerging as the universal format for publishing and ex­

hanging data on the Web, most business data is still stored and maintained in
relational DBMSs. In fa
t, relational DBMSs will remain dominant in managing
business data in foreseeable future be
ause of their powerful data management
servi
es. However, relational databases are proprietary and only a

essible within
an enterprise. To enable eBusiness database appli
ations, it is important for en­
terprises to publish their relational databases as XML do
uments given that
XML do
uments are universally a

essible.

A general approa
h to publish relational data is to
reate XML views of
the underlying relational data. On
e XML views are
reated over a relational
database, there are two ways to use these views. A simple way is to materialize
the XML views by physi
ally
reating the result XML do
uments spe
ifed by
the views. Obviously, this may not appli
able to a large view; otherwise tremen­
dous amount of spa
es may be used. Maintenan
e of the materialized views
may also need extra
omputation. A better way is to support queries over XML
views. SilkRoute [7] is one of the systems taking this approa
h. In SilkRoute,
XML views of a relational database are defned using a relational to XML trans­
formation language
alled RXL, and then XML­QL queries are issued against
views. The queries and views are
ombined together by a query
omposer and
the
ombined RXL queries are then translated into
orresponding SQL queries.
XPERANTO [5, 10, 11] takes a similar approa
h but uses XQuery [3] for user
queries.

We take a diferent approa
h. Instead of defning views based on relational
databases, we translate the underlying relational s
hema into equivalent XML

RParker
Rectangle

RParker
Rectangle

RParker
Rectangle

RParker
Rectangle

RParker
Rectangle

RParker
Rectangle

RParker
Rectangle

RParker
Rectangle

VXE-R

s
hema. Then XML queries are issued dire
tly against the XML s
hema. S
hema
mapping rules are designed to generate a normalized XML s
hema whi
h bring
no data redundan
y from the underlying relational s
hema. The translated XML
s
hema also preserves integrity
onstraints defned in a relational database s
hema.
It is important for users to be aware of the
onstraints in the XML s
hema
against whi
h they are going to issue queries. In the SilkRoute and XPERANTO
approa
hes, users
annot see the integrity
onstraints buried in the relational
s
hema from the XML views defned. Another benift of our proposed approa
h
is that the query translation pro
ess gets simplifed.

In this paper, we introdu
e a virtual XML database engine VXE­R whi
h
allows users query a relational database via XML as if they were a

essing XML
do
uments. VXE­R is
omposed of three
omponents. A s
hema translator whi
h
translates the underlying relational s
hema into equivalent XML s
hema, a query
translator whi
h translates the XQuery queries against XML s
hema into the
or­
responding SQL queries against the underlying relational s
hema, and an XML
do
ument generator whi
h
onverts SQL result tables into XML do
uments.

The rest of the paper is organized as follows. After the ar
hite
ture of VXE­R
is presented in Se
tion 2, we dis
uss the translation from relational s
hema to
XML s
hema in Se
tion 3. The translation of XQuery queries to
orresponding
SQL queries is des
ribed in Se
tion 4. The XML do
ument generator is intro­
du
ed in Se
tion 5. Se
tion 6
on
ludes the paper.

2 The Ar
hite
ture

XQuery queriesXQuery queries

SQL results

XQuery results

XML Schema

 QuerySchema

RDB

XML Documents

XQuery queries

Generator

RDBMSRDB Schema

SQL queries

 Translator Translator

Fig. 1. Ar
hite
ture of VXE-R

The ar
hite
ture of the virtual XML database engine VXE­R is shown in
Figure 1. There are three
omponents:

 A s
hema translator
 A query translator
 An XML do
ument generator

The s
hema translator is responsible to translate a relational database s
hema
into the
orresponding s
hema in XML S
hema. We
hoose XML S
hema [6] be­

ause Data Type Defnition (DTD) has a number of limitations, e.g., it is written
in a non­XML syntax; it has no support of namespa
es; it only ofers extremely
limited data typing. XML S
hema is a more
omprehensive and rigorous method
for defning
ontent model of an XML do
ument. The s
hema itself is an XML
do
ument, and so
an be pro
essed by the same tools that read the XML do
u­
ments it des
ribes. XML S
hema supports ri
h built­in types and allows
omplex
types built based on built­in types. It also supports key and unique
onstraints
whi
h are important to map relational databases to XML do
uments.

On
e an XML s
hema is
reated, user queries in XQuery
an be formulated
against it. As the real data is stored in relational databases, it is the responsibil­
ity of the query translator to translate the XQuery queries into the
orrespond­
ing SQL queries against the underlying relational s
hema. The translated SQL
queries are passed to a relational DBMS for exe
ution. XQuery [3] is
hosen as
the XML query language sin
e it is
urrently being standardized by the W3C.

After the exe
ution of the translated SQL queries, the result relations are
passed to the XML do
ument generator whi
h generates the result XML do
u­
ments for users after possible re­stru
turing a

ording to the requirements spe
­
ifed in the XQuery queries.

In the following se
tions, we des
ribe these three
omponents in detail.

3 S
hema Translation

In a relational database s
hema, diferent types of integrity
onstraints may be
defned, e.g., primary keys (PKs), foreign keys (FKs), null/not­null, unique, et
.
It is important to map all these
onstraints to the target XML s
hema. Also we
aim to a
hieve high level of nesting and to avoid introdu
ing redundan
y in the
target s
hema.

Basi
ally, the null/not­null
onstraint
an be easily represented by properly
setting minO

u'r of the transformed XML element for the relation attribute.
The unique
onstraint
an also be represented by the unique me
hanism in XML
S
hema straightforwardly. In the following, we frst fo
us on the mapping of
PK/FK
onstraints, then we
onsider further on the null/not­null and unique

onstraints.

XML S
hema supports two me
hanisms to represent identity and referen
e:
one is ID/IDREF while the other is KEY/KEYREF. There are diferen
es in
using these two me
hanisms. The former supports the dereferen
e fun
tion in
path expressions in most XML query languages in
luding XQuery, however, it
only applies to a single element/attributes. The latter may apply to multiple ele­
ments/attributes but
annot support the dereferen
e fun
tion. For s
hema trans­
lation, we use ID/IDREF where possible be
ause of the dereferen
e fun
tion sup­
port. For this purpose, we will diferentiate the single attribute primary/foreign
keys from multi­attribute primary/foreign keys while transforming the relational

database s
hema to XML s
hema. We also
lassify a relation into the following
four
ategories based on diferent types of primary keys:

'egula' : the primary key of a regular relation
ontains no foreign keys.

omponent : the primary key of a
omponent relation
ontains one foreign
key whi
h referen
es its parent relation. The other part of the primary key
serves as a lo
al identifer under the parent relation. A
omponent relation
is used to represent a
omponent or a multi­valued attribute of its parent
relation.

rupplementa'y : the primary key of a supplementary relation as a whole is
also a foreign key whi
h referen
es another relation. This relation is used
to supplement another relation or to represent a sub
lass for translating a
generalization hierar
hy from a
on
eptual s
hema.

arro
iation: the primary key of an asso
iation relation
ontains more than
one foreign keys, ea
h of whi
h referen
es a parti
ipant relation.

Based on above dis
ussion, we give the set of mapping rules.

3.1 Basi
 Mapping Rules

Given a relational database s
hema S
h with primary/foreign key defnitions, we
may use the following basi
 mapping rules to
onvert S
h into a
orresponding
XML s
hema S
h XML.

Rule 1 Fo' a 'elational databare r
hema S
h, a 'oot element named S
h XML
ir
'eated in the
o''erponding XML r
hema ar followr.

<xs: element name = "S
h XML">

<xs:
omplexType>

<xs: sequen
e>

<!-- translated relation s
hema of S
h -->

</xs: sequen
e>

</xs:
omplexType>

</xs: element>

Rule 2 Fo' ea
h 'egula' o' arro
iation 'elation R, the following element with
the rame name ar the 'elation r
hema ir
'eated and then put unde' the 'oot
element.

<xs: element name = "R" minO

urs = "0" maxO

urs = "unbounded">

<xs:
omplexType>

<xs: sequen
e>

<!-- the attributes of R -->

</xs: sequen
e>

</xs:
omplexType>

</xs: element>

Rule 3 Fo' ea
h
omponent 'elation Rl, let itr pa'ent 'elation be R2, then an
element with the rame name ar the
omponent 'elation ir
'eated and then pla
ed
ar a
hild element of R2. The
'eated element har the rame rt'u
tu'e ar the
element
'eated in Rule 2.

Rule 4 Fo' ea
h rupplementa'y 'elation Rl, let the 'elation whi
h Rl 'efe'en
er
be R2, then the following element with the rame name ar the rupplementa'y
'elation r
hema ir
'eated and then pla
ed ar a
hild element of R2. The
'eated
element har the rame rt'u
tu'e ar the element
'eated in Rule 2 ex
ept that the
maxO

urs ir 1.

Rule 5 Fo' ea
h ringle att'ibute p'ima'y key with the name of 'egula'
'elation R, an att'ibute of the element fo' R ir
'eated with ID data type ar
followr.

<xs: attribute name = "PKA" type = "xs:ID"/>

Rule 6 Fo' ea
h multiple att'ibute p'ima'y key of a 'egula', a
omponent
o' an arro
iation 'elation R, ruppore the key att'ibuter a'e l, , n,
an att'ibute of the element fo' R ir
'eated fo' ea
h i(1 : i : n) with
the
o''erponding data type. If R ir a
omponent 'elation and i ir a ringle
att'ibute fo'eign key
ontained in the p'ima'y key, then the data type of the

'eated att'ibute ir IDREF. Afte' that a key element ir defned with a sele
tor
to rele
t the element fo' R and reve'al felds to identify l, , n. The
key element
an be defned inride o' outride the element fo' R. The name of the
element rhould be unique within the namerpa
e.

<xs: element name = "R" minO

urs = "0" maxO

urs = "unbounded">

<xs:
omplexType>

<xs: attribute name = "PKA1" type = "xs:PKA1 type"/>

<xs: attribute name = "PKAn" type = "xs:PKAn type"/>

</xs:
omplexType>

<xs: key name = "PK"/>

<xs: sele
tor xpath = "R/"/>

<xs: field xpath = "�PKA1"/>

<xs: field xpath = "�PKAn"/>

</xs: key>

</xs: element>

Rule 7 Igno'e the mapping fo' p'ima'y key of ea
h rupplementa'y 'elation.

Rule 8 Fo' ea
h ringle att'ibute fo'eign key of a 'elation R ex
ept one
whi
h ir
ontained in the p'ima'y key of a
omponent o' rupplementa'y 'elation,
an att'ibute of the element fo' R ir
'eated with IDREF data type.

<xs: attribute name = "FKA" type = "xs:IDREF"/>

Rule 9 Fo' ea
h multiple att'ibute fo'eign key of a 'elation R ex
ept one
whi
h ir
ontained in the p'ima'y key of a
omponent o' rupplementa'y 'ela­
tion, ruppore 'efe'en
er of the 'efe'en
ed 'elation, and the fo'eign key
att'ibuter a'e l, , n, an att'ibute of the element fo' R ir
'eated fo'
ea
h i(1 : i : n) with
o''erponding data type. Then a keyref element ir
defned with a sele
tor to rele
t the element fo' R and reve'al felds to identify

l, , n. The key'ef element
an be defned eithe' inride o' outride
the element. The name of the element rhould be unique within the namer­
pa
e and refer of the element ir the name of the key element of the p'ima'y key
whi
h it 'efe'en
er.

<xs: element name = "R" minO

urs = "0" maxO

urs = "unbounded">

<xs:
omplexType>

<xs: attribute name = "FKA1" type = "xs:FKA1 type"/>

<xs: attribute name = "FKAn" type = "xs:FKAn type"/>

</xs:
omplexType>

<xs: keyref name = "FK" refer = "PK"/>

<xs: sele
tor xpath = "R/"/>

<xs: field xpath = "�FKA1"/>

<xs: field xpath = "�FKAn"/>

</xs: keyref>

</xs: element>

Rule 10 Fo' ea
h non­key att'ibute of a 'elation R, an element ir
'eated ar a

hild element of R. The name of the element ir the rame ar the att'ibute name.

Rule 1 to Rule 10 are relatively straitforward for mapping a relational database
s
hema to a
orresponding XML s
hema. One property of these rules is redun­
dan
y free preservation, i.e., Rule 1 to Rule 10 do not introdu
e any data redun­
dan
y provided the relational s
hema is redundan
y free.

Theorem 3.1 If the 'elational databare r
hema S
h ir 'edundan
y f'ee, the
XML r
hema S
h XML gene'ated by applying Rule 1 to Rule 1O ir alro 'edun­
dan
y f'ee.

This theorem is easy to prove. For a regular or an asso
iation relation R,
an element with the same name R is
reated under the root element, so the
relation R in S
h is isomorphi
ally transformed to an element in S
h XML. For
a
omponent relation R, a sub­element with the same name R is
reated under
its parent Rp. Be
ause of the foreign key
onstraint, we have the fun
tional
dependen
y R - Rp

, i.e., there is a many to one relationship from R to
Rp, therefore it is impossible that a tuple of R is pla
ed more than one time under
diferent element of Rp. Similar to a
omponent relation, there is no redundan
y
introdu
ed for a supplementary relation.

3.2 An Example

Let us have a look of a relational database s
hema Company for a
ompany.
Primary keys are underlined while foreign keys are in itali
 font.

Employee(eno, name,
ity, salary, dno)
Dept(dno, dname, mg'Eno)
DeptLo
(dno,
ity)
Proje
t(pno, pname,
ity, dno)
WorksOn(eno, pno, hours)

Given this s
hema as an input, the following XML s
hema will be generated:

<xs:element name="Company XML">

<xs:
omplexType>

<xs:sequen
e>

<xs:element name="Employee" minO

urs="0" maxO

urs="unbounded">

<xs:
omplexType>

<xs:sequen
e>

<xs:element name="name" type="xs:string"/>

<xs:element name="
ity" type="xs:string"/>

<xs:element name="salary" type="xs:int"/>

</xs:sequen
e>

<xs:attribute name="eno" type="xs:ID"/>

<xs:attribute name="dno" type="xs:IDREF"/>

</xs:
omplexType>

</xs:element>

<xs:element name="Dept" minO

urs="0" maxO

urs="unbounded">

<xs:
omplexType>

<xs:sequen
e>

<xs:element name="dname" type="xs:string"/>

<xs:element name="
ity" type="xs:string"/>

<xs:element name="DeptLo
" minO

urs="0" maxO

urs="unbounded">

<xs:
omplexType>

<xs:attribute name="dno" type="xs:IDREF"/>

<xs:attribute name="
ity" type="xs:string"/>

</xs:
omplexType>

<xs:key name="PK DeptLo
"/>

<xs:sele
tor xpath="Dept/DeptLo
/"/>

<xs:field xpath="�dno"/>

<xs:field xpath="�
ity"/>

</xs: key>

</xs:element>

</xs:sequen
e>

<xs:attribute name="dno" type="xs:ID"/>

<xs:attribute name="mgrEno" type="xs:IDREF"/>

</xs:
omplexType>

</xs:element>

<xs:element name="Proje
t" minO

urs="0" maxO

urs="unbounded">

<xs:
omplexType>

<xs:sequen
e>

<xs:element name="pname" type="xs:string"/>

<xs:element name="
ity" type="xs:string"/>

</xs:sequen
e>

<xs:attribute name="pno" type="xs:ID"/>

<xs:attribute name="dno" type="xs:IDREF"/>

</xs:
omplexType>

</xs:element>

<xs:element name="WorksOn" minO

urs="0" maxO

urs="unbounded">

<xs:
omplexType>

<xs:element name="hours" type="xs:int"/>

<xs:attribute name="eno" type="xs:IDREF"/>

<xs:attribute name="pno" type="xs:IDREF"/>

<xs:key name="PK WorksOn"/>

<xs:sele
tor xpath="WorksOn/"/>

<xs:field xpath="�eno"/>

<xs:field xpath="�pno"/>

</xs: key>

</xs:
omplexType>

</xs:element>

</xs:sequen
e>

</xs:
omplexType>

</xs:element>

The root element Company XML is
reated for the relational database s
hema
Company. Under the root element, four set elements Employee, Dept, P'oje
t and
Wo'krOn are
reated for relation s
hema Employee, Dept, P'oje
t and Wo'k­
rOn, respe
tively. For
omponent relation s
hema DeptLo
, element DeptLo
 is

reated under element Dept for its parent relation. PK/FK
onstraints in the
relational database s
hema Company have been mapped to the XML s
hema
Company XML by using ID/IDREF and KEY/FEYREF.

3.3 Exploring Nested Stru
tures

As we
an see, the basi
 mapping rules fail to explore all possible nested stru
­
tures. For example, the P'oje
t element
an be moved to under the Dept element
if every proje
t belongs to a department. Nesting is important in XML s
hema
be
ause it allows navigation of path expressions to be pro
essed eÆ
iently. If we
use IDREF instead, we may use system supported dereferen
e fun
tion to get
the referen
ed elements. In XML, the dereferen
e fun
tion is expensive be
ause
ID and IDREF types are value based. If we use KEYREF, we have to put an ex­
pli
it join
ondition in an XML query to get the referen
ed elements. Therefore,
we need to explore all possible nested stru
ture by investigating the referential
integrity
onstraints in the relational s
hema. For this purpose, we introdu
e a
referen
e graph as follows:

Defnition 3.1 : Given a 'elational databare r
hema
c = {Rl, , R }, an

referen
e graph of the r
hema
c ir defned ar a labeled di'e
ted g'aph R =
(V, ,) whe'e V ir a fnite ret of ve'ti
er 'ep'erenting 'elation r
hema R ,Rnl,

in
c; ir a fnite ret of a'
r, if the'e ir a fo'eign key defned in Ri whi
h 'ef­
e'en
er Rj , an a'
 e = Ri, Rj >E ; ir a ret of labelr fo' edger by applying
a labeling fun
tion f'om to the ret of att'ibute namer fo' fo'eign keyr.

Fig. 2. A Referen
e Graph

The referen
e graph of the relational s
hema Company is shown as in Fig­
ure 2. In the graph, the element of node DeptLo
 has been put under the element
of node Dept by Rule 3. From the graph, we may have the following improve­
ment if
ertain
onditions are satisfed.
(1) The element of node P'oje
t
ould be put under the element of node Dept if
the foreign key dno is defned as NOT­NULL. This is be
ause that node P'oje
t
only referen
es node Dept and a many to one relationship from P'oje
t to Dept

an be derived from the foreign key
onstraint. In addition, the NOT­NULL
foreign key means every proje
t has to belong one department. As a result, one
proje
t
an be put under one department and
annot be put twi
e under difer­
ent departments in the XML do
ument.
(2) A loop exists between Employee and Dept. What we
an get from this is
a many to many relationship between Employee and Dept. In fa
t, the foreign
key mg'Eno of Dept refe
ts a one to one relationship from Dept to Employee.
Fortunately, this semanti
s
an be
aptured by
he
king the unique
onstraint
defned for the foreign key mg'no. If there is su
h a unique
onstraint defned,
the foreign key mg'Eno of Dept really suggests a one to one relationship from
Dept to Employee. For the purpose of nesting, we delete the ar
 from Dept to
Employee labelled mg'no from the referen
e graph. The real relationship from
Employee to Dept is many to one. As su
h, the element of the node Employee

an also be put under the element of the node Dept if the foreign key dno is
defned to NOT­NULL.
(3) The node Wo'krOn referen
es two nodes Employee and P'oje
t. The element
of Wo'krOn
an be put under either Employee and P'oje
t if the
orresponding
foreign key is NOT­NULL. However, whi
h node to
hoose to put under all de­
pends on whi
h path will be used often in queries. We may leave this de
ision
to be
hosen by a designer.

Based on the above dis
ussion, we
an improve the basi
 mapping rules by
the following theorems.

Theorem 3.2 In a 'efe'en
e g'aph RG, if a node nl fo' 'elation Rl har only
one out
oming a'
 to anothe' node n2 fo' 'elation R2 and fo'eign key denoted
by the label of the a'
 ir defned ar NOT­NULL and the'e ir no loop between
nl and n2, then we
an move the element fo' Rl to unde' the element fo' R2

without int'odu
ing data 'edundan
y.

The proof of this theorem has already explained by the relationships between
P'oje
t and Dept, and between Dept and Employee in Figure 2. The only ar

from nl to n2 and there is no loop between the two nodes represents a many
to one relationship from Rl to R2, while the NOT­NULL foreign key gives a
many to exa
t one relationship from Rl to R2. Therefore, for ea
h instan
e of
Rl, it is put only on
e under exa
tly one instan
e of R2, no redundan
y will be
introdu
ed.

Similarly, we
an have the following.

Theorem 3.3 In a 'efe'en
e g'aph RG, if a node no fo' 'elation Ro har out­

oming a'
r to othe' noder nl, , nk fo' 'elationr Rl, , Rk, 'erpe
tively, and
the fo'eign key denoted by the label of at leart one ru
h out
oming a'
r ir defned
ar NOT­NULL and the'e ir no loop between no and any of nl, , nk, then we

an move the element fo' Ro to unde' the element fo' Ri (1 : i : k) without
int'odu
ing data 'edundan
y p'ovided the fo'eign key defned on the label of the
a'
 f'om no to ni ir NOT­NULL.

Rule 11 If the'e ir only one many to one 'elationrhip f'om 'elation Rl to an­
othe' 'elation R2 and the fo'eign key of Rl to R2 ir defned ar NOT­NULL, then
we
an move the element fo' Rl to unde' the element fo' R2 ar a
hild element.

Rule 12 If the'e a'e mo'e than one many to one 'elationrhip f'om 'elation Ro

to othe' 'elationr Rl, , Rk, then we
an move the element fo' Ro to unde' the
element fo' Ri (1 : i : k) ar a
hild element p'ovided the fo'eign key of Ro to
Rk ir defned ar NOT­NULL.

By many to one relationship from relation Rl to R2, we mean that there is
one ar
 whi
h
annot be deleted from node nl for Rl to node n2 for R2, and
there is no loop between nl and n2 in the referen
e graph. If we apply Rule 11
to the transformed XML s
hema Company XML, the elements for P'oje
t and
Employee will be moved to under Dept as follows, the attribute dno with IDREF
type
an be removed from both P'oje
t and Employee elements.

<xs:element name="Dept" minO

urs="0" maxO

urs="unbounded">

<xs:
omplexType>

<xs:sequen
e>

<xs:element name="dname" type="xs:string"/>

<xs:element name="
ity" type="xs:string"/>

<xs:element name="DeptLo
" minO

urs="0" maxO

urs="unbounded">

<xs:
omplexType>

<xs:attribute name="dno" type="xs:IDREF"/>

<xs:attribute name="
ity" type="xs:string"/>

</xs:
omplexType>

<xs:key name="PK DeptLo
"/>

<xs:sele
tor xpath="Dept/DeptLo
/"/>

<xs:field xpath="�dno"/>

<xs:field xpath="�
ity"/>

</xs: key>

</xs:element>

<xs:element name="Proje
t" minO

urs="0" maxO

urs="unbounded">

<xs:
omplexType>

<xs:sequen
e>

<xs:element name="pname" type="xs:string"/>

<xs:element name="
ity" type="xs:string"/>

</xs:sequen
e>

<xs:attribute name="pno" type="xs:ID"/>

</xs:
omplexType>

</xs:element>

<xs:element name="Employee" minO

urs="0" maxO

urs="unbounded">

<xs:
omplexType>

<xs:sequen
e>

<xs:element name="name" type="xs:string"/>

<xs:element name="
ity" type="xs:string"/>

<xs:element name="salary" type="xs:int"/>

</xs:sequen
e>

<xs:attribute name="eno" type="xs:ID"/>

</xs:
omplexType>

</xs:element>

</xs:sequen
e>

<xs:attribute name="dno" type="xs:ID"/>

<xs:attribute name="mgrEno" type="xs:IDREF"/>

</xs:
omplexType>

</xs:element>

XML S
hema ofers great fexibility in modeling do
uments. Therefore, there
exist many ways to map a relational database s
hema into a s
hema in XML
S
hema. For examples, XViews [2]
onstru
ts graph based on PK/FK relation­
ship and generate
andidate views by
hoosing node with either maximum in­
degree or zero in­degree as root element. The
andidate XML views generated
a
hieve high level of nesting but sufer
onsiderable level of data redundan
y.
NeT [8] derives nested stru
tures from fat relations by repeatedly applying nert
operator on tuples of ea
h relation. The resulting nested stru
tures may be use­
less be
ause the derivation is not at the type level. Compared with XViews and
NeT, our mapping rules
an a
hieve high level of nesting for the translated XML
s
hema while introdu
ing no data redundan
y provided the underlying relational
s
hema is redundan
y free.

4 Query Translation

In this se
tion, we dis
uss how XQuery queries are translated to
orresponding
SQL queries. SQL is used to express queries on fat relations, where a join op­
eration may be used frequently to join relations together; while XQuery is used
to express queries on elements whi
h
ould be highly nested by sub­elements or
linked by IDREF, where navigation via path expression is the main means to
link elements of a do
ument together. As XQuery is more powerful and fexible
than SQL, it is hard to translate an arbitrary XQuery query to
orrespond­
ing SQL query. Fortunately, in VXE­R, the XML s
hema is generated from the
underlying relational database s
hema, therefore, the stru
ture of the mapped
XML elements is no'malized. Given the mapping rules introdu
ed in Se
tion 3,
we know the reverse mapping whi
h is
ru
ial for translating queries in XQuery
to the
orresponding queries in SQL.

As XQuery is still in its draft version, in this paper, we only
onsider the
translation of basi
 XQuery queries whi
h do not in
lude aggregate fun
tions.
The main stru
ture of an XQuery query
an be formulated by an FLWOR expres­
sion with the help of XPath expressions. An FLWOR expression is
onstru
ted
from FOR, LET, WHERE, ORDER BY, and RETURN
lauses. FOR and LET

lauses serve to bind values to one or more variables using (path) expressions.
The FOR
lause is used for iteration, with ea
h variable in FOR iterates over the
nodes returned by its respe
tive expression; while the optional LET
lause binds
a variable to an expression without iteration, resulting in a single binding for ea
h
variable. As the LET
lause is usually used to pro
ess grouping and aggregate
fun
tions, the pro
essing of the LET
lause is not dis
ussed here. The optional
WHERE
lause spe
ifes one or more
onditions to restri
t the binding­tuples
generated by FOR and LET
lauses. The RETURN
lause is used to spe
ify an
element stru
ture and to
onstru
t the result elements in the spe
ifed stru
ture.
The optional ORDER BY
lause determines the order of the result elements.

A basi
 XQuery query
an be formulated with a simplifed FLWOR expres­
sion:

FOR x1 in p1, ,xn in pn

WHERE

RETURN s

In the FOR
lause, iteration variables Xl, , Xn are defned over the path
expressions Pl, , Pn. In the WHERE
lause, the expression
 spe
ifes
on­
ditions for qualifed binding­tuples generated by the iteration variables. Some

onditions may be in
luded in Pi to sele
t tuples iterated by the variable Xi.
In the RETURN
lause, the return stru
ture is spe
ifed by the expression s.
A nested FLWOR expression
an be in
luded in s to spe
ify a rubque'y over
sub­elements.

4.1 The Algorithm

Input A basi
 XQuery query Qxquery against an XML s
hema S
h XML whi
h
is generated from the underlying relational s
hema S
h.

Output A
orresponding SQL query Qsql against the relational s
hema S
h.
Step 1: make Qxquery
anoni
al ­ Let Pi defned in the FOR
lause be the form
of IstePilI IstePik. We
he
k whether there is a test
ondition, say
ij in
stePij of Pi from left to right. If there is su
h a step, let stePij be the form of
lij [
ij], then we add an extra iteration variable Yij in the FOR
lause whi
h is
defned over the path expression IlilI Ilij , and move the
ondition
ij to the
WHERE
lause, ea
h element or attribute in
ij is prefxed with $YijI.
Step 2: identify all 'elationr ­ After Step 1, ea
h Pi in the FOR
lause is now
in the form of IlilI Ilik, where lij(1 : j : k) is an element in S
h XML.
Usually Pi
orresponds to a relation in S
h (lik mat
hes the name of a relation
s
hema in S
h). The mat
hed relation name lik is put in the FROM
lause of
Qsql followed by the iteration variable Xi served as a tuple variable for relation
lik. If there is an iteration variable, say Xj , appears in Pi, repla
e the o

urren
e
of Xj with Pj . On
e both relations, say Ri and Rj , represented by Pi and Pj
respe
tively are identifed, a link from Ri to Rj is added in a temporary list
LINK. If there are nested FLWOR expressions defned in RETURN
lause, the
relation identif
ation pro
ess is applied re
ursively to the FOR
lause of the
nested FLWOR expressions.
Step 3: identify all ta'get att'ibuter fo' ea
h identifed 'elation ­ All target at­
tributes of Qsql appear in the RETURN
lause. For ea
h leaf element (in the
form of $XiIt) or attribute (in the form of $XiI�t) defned in s of the RETURN

lause, repla
e it with a relation attribute in the form of Xi.t. Ea
h identifed
target attribute is put in the SELECT
lause of Qsql. If there are nested FLWOR
expressions defned in RETURN
lause, the target attribute identif
ation pro­

ess is applied re
ursively to the RETURN
lause of the nested FLWOR expres­
sions.
Step 4: identify
onditionr ­ Repla
e ea
h element (in the form of $XiIt) or
attribute (in the form of $XiI�t) in the WHERE
lause of Qxquery, then move
all
onditions to the WHERE
lause of Qsql with a relation attribute in the form
of Xi.t. If there are nested FLWOR expressions defned in RETURN
lause, the

ondition identif
ation pro
ess is applied re
ursively to the WHERE
lause of
the nested FLWOR expressions.
Step 5: ret the linkr between ite'ation va'iabler ­ If there is any link put in the
temporary list LINK, then for ea
h link from Ri to Rj ,
reate a join
ondition
between the foreign key attributes of Ri and the
orresponding primary key
attributes of Rj and ANDed to the other
onditions of the WHERE
lause of
Qsql.

4.2 An Example

Suppose we want to fnd all departments whi
h have oÆ
e in Adelaide and we
want to list the name of those departments as well as the name and salary of
all employees who live in Adelaide and work in those departments. The XQuery
query for this request
an be formulated as follows:

FOR $d in /Dept, $e in $d/Employee, $l in $d/DeptLo

WHERE $l/
ity = "Adelaide" and

$e/
ity = "Adelaide" and

$e/�dno = $d/�dno

RETURN

<Dept>

<dname> $d/dname </dname>

<employees>

<name> $e/name </name>

<salary> $e/salary </salary>

</employees>

</Dept>

Given this query as an input, the following SQL query will be generated:

SELECT d dname, e name, e salary

FROM Dept d, Employee e, DeptLo
 l

WHERE l
ity = "Adelaide" and

e
ity = "Adelaide" and

e dno = d dno and

l dno = d dno

5 XML Do
uments Generation

As seen from the query translation algorithm and example introdu
ed in the
previous se
tion, the translated SQL query takes all leaf elements or attributes
defned in an XQuery query RETURN
lause and output them in a fat relation.
However, users may require a nested result stru
ture su
h as the RETURN
stru
ture defned in the example XQuery query. Therefore, when we generate
the XML result do
uments from the translated SQL query result relations, we
need to restru
ture the fat result relation by a g'ouping operator [9] or a nert
operator for 2 relations, then
onvert it into XML do
uments.

Similar to SQL GROUP BY
lause, the grouping operator divides a set or
list of tuples into groups a

ording to key attributes. For instan
e, suppose the
translated SQL query generated from the example XQuery query returns the
following result relation as shown in Table 1. After we apply grouping on the
relation using dname as the key, we have the nested relation as shown in Table
2 whi
h
an be easily
onverted to the result XML do
ument as spe
ifed in the
example XQuery query.

dname name salary

development Smith, John 70,000

marketing Mason, Lisa 60,000

development Leung, Mary 50,000

marketing Lee, Robert 80,000

development Chen, Helen 70,000

dname name salary

development Smith, John
Leung, Mary
Chen, Helen

70,000
50,000
70,000

marketing Mason, Lisa
Lee, Robert

60,000
80,000

Table 1. latRelation Example Table 2. Nested Relation Example

6 Con
lusion and Future Work

This paper introdu
ed the ar
hite
ture and
omponents of a virtual XML database
engine VXE­R. VXE­R presents a normalized XML s
hema whi
h preserves in­
tegrity
onstraints defned in the underlying relational database s
hema to users
for queries. S
hema mapping rules from relational to XML S
hema were dis­

ussed. The Query translation algorithm for translating basi
 XQuery queries
to
orresponding SQL queries was presented. The main idea of XML do
ument
generation from the SQL query results was also dis
ussed.

We believe that VXE­R is efe
tive and pra
ti
al for a

essing relational
databases via XML. In the future, we will build a prototype for VXE­R. We
will also examine the mapping rules using our formal study of the mapping from
relational database s
hema to XML s
hema in terms of fun
tional dependen
ies
and multi­valued dependen
ies [12, 13], and investigate the query translation of

omplex XQuery queries and
omplex result XML do
ument generation.

Referen
es

1. S. Abiteboul, P. Buneman, and D. Su
iu. Data on the Web: From Relations to
Semistru
tured Data and XML. Morgan Kaufmann Publishers, 2000.

2. C. Baru. Xviews: Xml views of relational s
hemas. In Pro
eedings of DEXA
Workshop, pages 700�705, 1999.

3. S. Boag, D. Chamberlin amd M. ernandez, D. lores
u,J. Robie, J. Simeon, and
M. Stefanes
u. XQuery 1.0: An XML Query Language, April 2002. W3C Working
Draft, http://www.w3.org/TR/2002/WD-xquery-20020430/.

4. T. Bray, J. Paoli, C. Sperberg-M
Queen, and E. Maler. Extensible Markup
Language (XML) 1.0 (Se
ond Edition), O
tober 2000. W3C Re
ommendation,
http://www.w3.org/TR/REC-xml.

5. M. Carey, J. Kiernan, J. Shanmugasundaram, E. Shekita, and S. Subramanian.
Xperanto: Middleware for publishing obje
t-relational data as xml do
uments. In
Pro
eedings of VLDB, pages 646�648, 2000.

6. D. allside. XML S
hema Part 0: Primer, May 2001. W3C Re
ommendation,
http://www.w3.org/TR/xmls
hema-0/.

7. M. ernandez, W. Tan, and D. Su
iu. Silkroute: Trading between relations and
xml. In Pro
eedings of WWW, pages 723�725, 2000.

8. D. Lee, M. Mani, .Chiu, and W. Chu. Nesting-based relational-to-xml s
hema
translation. In Pro
eedings of the WebDB, pages 61�66, 2001.

9. J. Liu and C. Liu. A de
larative way of extra
ting xml data in xsl. In Pro
eedings
of ADBIS, pages 374�387, September 2002.

10. J. Shanmugasundaram, J. Kiernan, E. Shekita, C. an, and J. underburk. Query-
ing xml views of relational data. In Pro
eedings of VLDB, pages 261�270, 2001.

11. J. Shanmugasundaram, E. Shekita, R. Barr, M. Carey, B. Lindsay, H. Pirahesh,
and B. Reinwald. EÆ
iently publishing relational data as xml do
uments. In
Pro
eedings of VLDB, pages 65�76, 2000.

12. M. Vin
ent, J. Liu, and C. Liu. A redundan
y free 4nf for xml. In Pro
eedings of
XSYM, September 2003.

13. M. Vin
ent, J. Liu, and C. Liu. Redundan
y free mapping from relations to xml.
In Pro
eedings of WAIM, August 2003.

