

 Swinburne Research Bank
 http://researchbank.swinburne.edu.au

Liu, C., Vincent, M. W., & Liu, J., et al. (2003). A virtual XML database engine for relational

databases.

Originally published in Z. Bellahsene, A. B. Chaudhri, & E. Rahm, et al. (eds.). Proceedings of
‘Database and XML technologies’, the 1st International XML Database Symposium

(XSym 2003), Berlin, Germany, 08 September 2003.
Lecture notes in computer science (Vol. 2824, pp. 37–51). Berlin: Springer.

Available from: http://dx.doi.org/10.1007/978-3-540-39429-7_3

Copyright © 2003 Springer-Verlag Berlin Heidelberg.

The original publication is available at www.springer.com.

This is the author’s version of the work. It is posted here with the permission of the publisher for
your personal use. No further distribution is permitted. If your library has a subscription to these
conference proceedings, you may also be able to access the published version via the library

catalogue.

Accessed from Swinburne Research Bank: http://hdl.handle.net/1959.3/39748

A Virtual XML Database Engine for Relational

Databases

Chengfei Liul, Millist W. Vinentl, Jixue Liul, Minyi Guo2

� University of South Australia, Adelaide, SA 5095, Australia
� The University of Aizu, Aizu-Wakamatsu City, ukushima, 965-8580, Japan

Abstrat. While XML is emerging as the universal format for publish-
ing and exhanging data on the Web, most business data is still stored
and maintained in relational DBMSs. To enable eBusiness database ap-
pliations, Web aess to the legay data managed by DBMSs needs to
be provided. In this paper, we introdue a virtual XML database engine
VXE-R whih allows users query a relational database via XML as if they
were aessing XML douments. Algorithms for shema transformation
and query translation in VXE-R are presented.

1 Introdution

While XML [1, 4] is emerging as the universal format for publishing and ex
hanging data on the Web, most business data is still stored and maintained in
relational DBMSs. In fat, relational DBMSs will remain dominant in managing
business data in foreseeable future beause of their powerful data management
servies. However, relational databases are proprietary and only aessible within
an enterprise. To enable eBusiness database appliations, it is important for en
terprises to publish their relational databases as XML douments given that
XML douments are universally aessible.

A general approah to publish relational data is to reate XML views of
the underlying relational data. One XML views are reated over a relational
database, there are two ways to use these views. A simple way is to materialize
the XML views by physially reating the result XML douments speifed by
the views. Obviously, this may not appliable to a large view; otherwise tremen
dous amount of spaes may be used. Maintenane of the materialized views
may also need extra omputation. A better way is to support queries over XML
views. SilkRoute [7] is one of the systems taking this approah. In SilkRoute,
XML views of a relational database are defned using a relational to XML trans
formation language alled RXL, and then XMLQL queries are issued against
views. The queries and views are ombined together by a query omposer and
the ombined RXL queries are then translated into orresponding SQL queries.
XPERANTO [5, 10, 11] takes a similar approah but uses XQuery [3] for user
queries.

We take a diferent approah. Instead of defning views based on relational
databases, we translate the underlying relational shema into equivalent XML

RParker
Rectangle

RParker
Rectangle

RParker
Rectangle

RParker
Rectangle

RParker
Rectangle

RParker
Rectangle

RParker
Rectangle

RParker
Rectangle

VXE-R

shema. Then XML queries are issued diretly against the XML shema. Shema
mapping rules are designed to generate a normalized XML shema whih bring
no data redundany from the underlying relational shema. The translated XML
shema also preserves integrity onstraints defned in a relational database shema.
It is important for users to be aware of the onstraints in the XML shema
against whih they are going to issue queries. In the SilkRoute and XPERANTO
approahes, users annot see the integrity onstraints buried in the relational
shema from the XML views defned. Another benift of our proposed approah
is that the query translation proess gets simplifed.

In this paper, we introdue a virtual XML database engine VXER whih
allows users query a relational database via XML as if they were aessing XML
douments. VXER is omposed of three omponents. A shema translator whih
translates the underlying relational shema into equivalent XML shema, a query
translator whih translates the XQuery queries against XML shema into the or
responding SQL queries against the underlying relational shema, and an XML
doument generator whih onverts SQL result tables into XML douments.

The rest of the paper is organized as follows. After the arhiteture of VXER
is presented in Setion 2, we disuss the translation from relational shema to
XML shema in Setion 3. The translation of XQuery queries to orresponding
SQL queries is desribed in Setion 4. The XML doument generator is intro
dued in Setion 5. Setion 6 onludes the paper.

2 The Arhiteture

XQuery queriesXQuery queries

SQL results

XQuery results

XML Schema

 QuerySchema

RDB

XML Documents

XQuery queries

Generator

RDBMSRDB Schema

SQL queries

 Translator Translator

Fig. 1. Arhiteture of VXE-R

The arhiteture of the virtual XML database engine VXER is shown in
Figure 1. There are three omponents:

 A shema translator
 A query translator
 An XML doument generator

The shema translator is responsible to translate a relational database shema
into the orresponding shema in XML Shema. We hoose XML Shema [6] be
ause Data Type Defnition (DTD) has a number of limitations, e.g., it is written
in a nonXML syntax; it has no support of namespaes; it only ofers extremely
limited data typing. XML Shema is a more omprehensive and rigorous method
for defning ontent model of an XML doument. The shema itself is an XML
doument, and so an be proessed by the same tools that read the XML dou
ments it desribes. XML Shema supports rih builtin types and allows omplex
types built based on builtin types. It also supports key and unique onstraints
whih are important to map relational databases to XML douments.

One an XML shema is reated, user queries in XQuery an be formulated
against it. As the real data is stored in relational databases, it is the responsibil
ity of the query translator to translate the XQuery queries into the orrespond
ing SQL queries against the underlying relational shema. The translated SQL
queries are passed to a relational DBMS for exeution. XQuery [3] is hosen as
the XML query language sine it is urrently being standardized by the W3C.

After the exeution of the translated SQL queries, the result relations are
passed to the XML doument generator whih generates the result XML dou
ments for users after possible restruturing aording to the requirements spe
ifed in the XQuery queries.

In the following setions, we desribe these three omponents in detail.

3 Shema Translation

In a relational database shema, diferent types of integrity onstraints may be
defned, e.g., primary keys (PKs), foreign keys (FKs), null/notnull, unique, et.
It is important to map all these onstraints to the target XML shema. Also we
aim to ahieve high level of nesting and to avoid introduing redundany in the
target shema.

Basially, the null/notnull onstraint an be easily represented by properly
setting minOu'r of the transformed XML element for the relation attribute.
The unique onstraint an also be represented by the unique mehanism in XML
Shema straightforwardly. In the following, we frst fous on the mapping of
PK/FK onstraints, then we onsider further on the null/notnull and unique
onstraints.

XML Shema supports two mehanisms to represent identity and referene:
one is ID/IDREF while the other is KEY/KEYREF. There are diferenes in
using these two mehanisms. The former supports the dereferene funtion in
path expressions in most XML query languages inluding XQuery, however, it
only applies to a single element/attributes. The latter may apply to multiple ele
ments/attributes but annot support the dereferene funtion. For shema trans
lation, we use ID/IDREF where possible beause of the dereferene funtion sup
port. For this purpose, we will diferentiate the single attribute primary/foreign
keys from multiattribute primary/foreign keys while transforming the relational

database shema to XML shema. We also lassify a relation into the following
four ategories based on diferent types of primary keys:

'egula' : the primary key of a regular relation ontains no foreign keys.

omponent : the primary key of a omponent relation ontains one foreign
key whih referenes its parent relation. The other part of the primary key
serves as a loal identifer under the parent relation. A omponent relation
is used to represent a omponent or a multivalued attribute of its parent
relation.

rupplementa'y : the primary key of a supplementary relation as a whole is
also a foreign key whih referenes another relation. This relation is used
to supplement another relation or to represent a sublass for translating a
generalization hierarhy from a oneptual shema.

arroiation: the primary key of an assoiation relation ontains more than
one foreign keys, eah of whih referenes a partiipant relation.

Based on above disussion, we give the set of mapping rules.

3.1 Basi Mapping Rules

Given a relational database shema Sh with primary/foreign key defnitions, we
may use the following basi mapping rules to onvert Sh into a orresponding
XML shema Sh XML.

Rule 1 Fo' a 'elational databare rhema Sh, a 'oot element named Sh XML
ir 'eated in the o''erponding XML rhema ar followr.

<xs: element name = "Sh XML">

<xs: omplexType>

<xs: sequene>

<!-- translated relation shema of Sh -->

</xs: sequene>

</xs: omplexType>

</xs: element>

Rule 2 Fo' eah 'egula' o' arroiation 'elation R, the following element with
the rame name ar the 'elation rhema ir 'eated and then put unde' the 'oot
element.

<xs: element name = "R" minOurs = "0" maxOurs = "unbounded">

<xs: omplexType>

<xs: sequene>

<!-- the attributes of R -->

</xs: sequene>

</xs: omplexType>

</xs: element>

Rule 3 Fo' eah omponent 'elation Rl, let itr pa'ent 'elation be R2, then an
element with the rame name ar the omponent 'elation ir 'eated and then plaed
ar a hild element of R2. The 'eated element har the rame rt'utu'e ar the
element 'eated in Rule 2.

Rule 4 Fo' eah rupplementa'y 'elation Rl, let the 'elation whih Rl 'efe'ener
be R2, then the following element with the rame name ar the rupplementa'y
'elation rhema ir 'eated and then plaed ar a hild element of R2. The 'eated
element har the rame rt'utu'e ar the element 'eated in Rule 2 exept that the
maxOurs ir 1.

Rule 5 Fo' eah ringle att'ibute p'ima'y key with the name of 'egula'
'elation R, an att'ibute of the element fo' R ir 'eated with ID data type ar
followr.

<xs: attribute name = "PKA" type = "xs:ID"/>

Rule 6 Fo' eah multiple att'ibute p'ima'y key of a 'egula', a omponent
o' an arroiation 'elation R, ruppore the key att'ibuter a'e l, , n,
an att'ibute of the element fo' R ir 'eated fo' eah i(1 : i : n) with
the o''erponding data type. If R ir a omponent 'elation and i ir a ringle
att'ibute fo'eign key ontained in the p'ima'y key, then the data type of the
'eated att'ibute ir IDREF. Afte' that a key element ir defned with a seletor
to relet the element fo' R and reve'al felds to identify l, , n. The
key element an be defned inride o' outride the element fo' R. The name of the
element rhould be unique within the namerpae.

<xs: element name = "R" minOurs = "0" maxOurs = "unbounded">

<xs: omplexType>

<xs: attribute name = "PKA1" type = "xs:PKA1 type"/>

<xs: attribute name = "PKAn" type = "xs:PKAn type"/>

</xs: omplexType>

<xs: key name = "PK"/>

<xs: seletor xpath = "R/"/>

<xs: field xpath = "�PKA1"/>

<xs: field xpath = "�PKAn"/>

</xs: key>

</xs: element>

Rule 7 Igno'e the mapping fo' p'ima'y key of eah rupplementa'y 'elation.

Rule 8 Fo' eah ringle att'ibute fo'eign key of a 'elation R exept one
whih ir ontained in the p'ima'y key of a omponent o' rupplementa'y 'elation,
an att'ibute of the element fo' R ir 'eated with IDREF data type.

<xs: attribute name = "FKA" type = "xs:IDREF"/>

Rule 9 Fo' eah multiple att'ibute fo'eign key of a 'elation R exept one
whih ir ontained in the p'ima'y key of a omponent o' rupplementa'y 'ela
tion, ruppore 'efe'ener of the 'efe'ened 'elation, and the fo'eign key
att'ibuter a'e l, , n, an att'ibute of the element fo' R ir 'eated fo'
eah i(1 : i : n) with o''erponding data type. Then a keyref element ir
defned with a seletor to relet the element fo' R and reve'al felds to identify

l, , n. The key'ef element an be defned eithe' inride o' outride
the element. The name of the element rhould be unique within the namer
pae and refer of the element ir the name of the key element of the p'ima'y key
whih it 'efe'ener.

<xs: element name = "R" minOurs = "0" maxOurs = "unbounded">

<xs: omplexType>

<xs: attribute name = "FKA1" type = "xs:FKA1 type"/>

<xs: attribute name = "FKAn" type = "xs:FKAn type"/>

</xs: omplexType>

<xs: keyref name = "FK" refer = "PK"/>

<xs: seletor xpath = "R/"/>

<xs: field xpath = "�FKA1"/>

<xs: field xpath = "�FKAn"/>

</xs: keyref>

</xs: element>

Rule 10 Fo' eah nonkey att'ibute of a 'elation R, an element ir 'eated ar a
hild element of R. The name of the element ir the rame ar the att'ibute name.

Rule 1 to Rule 10 are relatively straitforward for mapping a relational database
shema to a orresponding XML shema. One property of these rules is redun
dany free preservation, i.e., Rule 1 to Rule 10 do not introdue any data redun
dany provided the relational shema is redundany free.

Theorem 3.1 If the 'elational databare rhema Sh ir 'edundany f'ee, the
XML rhema Sh XML gene'ated by applying Rule 1 to Rule 1O ir alro 'edun
dany f'ee.

This theorem is easy to prove. For a regular or an assoiation relation R,
an element with the same name R is reated under the root element, so the
relation R in Sh is isomorphially transformed to an element in Sh XML. For
a omponent relation R, a subelement with the same name R is reated under
its parent Rp. Beause of the foreign key onstraint, we have the funtional
dependeny R - Rp

, i.e., there is a many to one relationship from R to
Rp, therefore it is impossible that a tuple of R is plaed more than one time under
diferent element of Rp. Similar to a omponent relation, there is no redundany
introdued for a supplementary relation.

3.2 An Example

Let us have a look of a relational database shema Company for a ompany.
Primary keys are underlined while foreign keys are in itali font.

Employee(eno, name, ity, salary, dno)
Dept(dno, dname, mg'Eno)
DeptLo(dno, ity)
Projet(pno, pname, ity, dno)
WorksOn(eno, pno, hours)

Given this shema as an input, the following XML shema will be generated:

<xs:element name="Company XML">

<xs:omplexType>

<xs:sequene>

<xs:element name="Employee" minOurs="0" maxOurs="unbounded">

<xs:omplexType>

<xs:sequene>

<xs:element name="name" type="xs:string"/>

<xs:element name="ity" type="xs:string"/>

<xs:element name="salary" type="xs:int"/>

</xs:sequene>

<xs:attribute name="eno" type="xs:ID"/>

<xs:attribute name="dno" type="xs:IDREF"/>

</xs:omplexType>

</xs:element>

<xs:element name="Dept" minOurs="0" maxOurs="unbounded">

<xs:omplexType>

<xs:sequene>

<xs:element name="dname" type="xs:string"/>

<xs:element name="ity" type="xs:string"/>

<xs:element name="DeptLo" minOurs="0" maxOurs="unbounded">

<xs:omplexType>

<xs:attribute name="dno" type="xs:IDREF"/>

<xs:attribute name="ity" type="xs:string"/>

</xs:omplexType>

<xs:key name="PK DeptLo"/>

<xs:seletor xpath="Dept/DeptLo/"/>

<xs:field xpath="�dno"/>

<xs:field xpath="�ity"/>

</xs: key>

</xs:element>

</xs:sequene>

<xs:attribute name="dno" type="xs:ID"/>

<xs:attribute name="mgrEno" type="xs:IDREF"/>

</xs:omplexType>

</xs:element>

<xs:element name="Projet" minOurs="0" maxOurs="unbounded">

<xs:omplexType>

<xs:sequene>

<xs:element name="pname" type="xs:string"/>

<xs:element name="ity" type="xs:string"/>

</xs:sequene>

<xs:attribute name="pno" type="xs:ID"/>

<xs:attribute name="dno" type="xs:IDREF"/>

</xs:omplexType>

</xs:element>

<xs:element name="WorksOn" minOurs="0" maxOurs="unbounded">

<xs:omplexType>

<xs:element name="hours" type="xs:int"/>

<xs:attribute name="eno" type="xs:IDREF"/>

<xs:attribute name="pno" type="xs:IDREF"/>

<xs:key name="PK WorksOn"/>

<xs:seletor xpath="WorksOn/"/>

<xs:field xpath="�eno"/>

<xs:field xpath="�pno"/>

</xs: key>

</xs:omplexType>

</xs:element>

</xs:sequene>

</xs:omplexType>

</xs:element>

The root element Company XML is reated for the relational database shema
Company. Under the root element, four set elements Employee, Dept, P'ojet and
Wo'krOn are reated for relation shema Employee, Dept, P'ojet and Wo'k
rOn, respetively. For omponent relation shema DeptLo, element DeptLo is
reated under element Dept for its parent relation. PK/FK onstraints in the
relational database shema Company have been mapped to the XML shema
Company XML by using ID/IDREF and KEY/FEYREF.

3.3 Exploring Nested Strutures

As we an see, the basi mapping rules fail to explore all possible nested stru
tures. For example, the P'ojet element an be moved to under the Dept element
if every projet belongs to a department. Nesting is important in XML shema
beause it allows navigation of path expressions to be proessed eÆiently. If we
use IDREF instead, we may use system supported dereferene funtion to get
the referened elements. In XML, the dereferene funtion is expensive beause
ID and IDREF types are value based. If we use KEYREF, we have to put an ex
pliit join ondition in an XML query to get the referened elements. Therefore,
we need to explore all possible nested struture by investigating the referential
integrity onstraints in the relational shema. For this purpose, we introdue a
referene graph as follows:

Defnition 3.1 : Given a 'elational databare rhema c = {Rl, , R }, an

referene graph of the rhema c ir defned ar a labeled di'eted g'aph R =
(V, ,) whe'e V ir a fnite ret of ve'tier 'ep'erenting 'elation rhema R ,Rnl,

in c; ir a fnite ret of a'r, if the'e ir a fo'eign key defned in Ri whih 'ef
e'ener Rj , an a' e = Ri, Rj >E ; ir a ret of labelr fo' edger by applying
a labeling funtion f'om to the ret of att'ibute namer fo' fo'eign keyr.

Fig. 2. A Referene Graph

The referene graph of the relational shema Company is shown as in Fig
ure 2. In the graph, the element of node DeptLo has been put under the element
of node Dept by Rule 3. From the graph, we may have the following improve
ment if ertain onditions are satisfed.
(1) The element of node P'ojet ould be put under the element of node Dept if
the foreign key dno is defned as NOTNULL. This is beause that node P'ojet
only referenes node Dept and a many to one relationship from P'ojet to Dept
an be derived from the foreign key onstraint. In addition, the NOTNULL
foreign key means every projet has to belong one department. As a result, one
projet an be put under one department and annot be put twie under difer
ent departments in the XML doument.
(2) A loop exists between Employee and Dept. What we an get from this is
a many to many relationship between Employee and Dept. In fat, the foreign
key mg'Eno of Dept refets a one to one relationship from Dept to Employee.
Fortunately, this semantis an be aptured by heking the unique onstraint
defned for the foreign key mg'no. If there is suh a unique onstraint defned,
the foreign key mg'Eno of Dept really suggests a one to one relationship from
Dept to Employee. For the purpose of nesting, we delete the ar from Dept to
Employee labelled mg'no from the referene graph. The real relationship from
Employee to Dept is many to one. As suh, the element of the node Employee
an also be put under the element of the node Dept if the foreign key dno is
defned to NOTNULL.
(3) The node Wo'krOn referenes two nodes Employee and P'ojet. The element
of Wo'krOn an be put under either Employee and P'ojet if the orresponding
foreign key is NOTNULL. However, whih node to hoose to put under all de
pends on whih path will be used often in queries. We may leave this deision
to be hosen by a designer.

Based on the above disussion, we an improve the basi mapping rules by
the following theorems.

Theorem 3.2 In a 'efe'ene g'aph RG, if a node nl fo' 'elation Rl har only
one outoming a' to anothe' node n2 fo' 'elation R2 and fo'eign key denoted
by the label of the a' ir defned ar NOTNULL and the'e ir no loop between
nl and n2, then we an move the element fo' Rl to unde' the element fo' R2

without int'oduing data 'edundany.

The proof of this theorem has already explained by the relationships between
P'ojet and Dept, and between Dept and Employee in Figure 2. The only ar
from nl to n2 and there is no loop between the two nodes represents a many
to one relationship from Rl to R2, while the NOTNULL foreign key gives a
many to exat one relationship from Rl to R2. Therefore, for eah instane of
Rl, it is put only one under exatly one instane of R2, no redundany will be
introdued.

Similarly, we an have the following.

Theorem 3.3 In a 'efe'ene g'aph RG, if a node no fo' 'elation Ro har out
oming a'r to othe' noder nl, , nk fo' 'elationr Rl, , Rk, 'erpetively, and
the fo'eign key denoted by the label of at leart one ruh outoming a'r ir defned
ar NOTNULL and the'e ir no loop between no and any of nl, , nk, then we
an move the element fo' Ro to unde' the element fo' Ri (1 : i : k) without
int'oduing data 'edundany p'ovided the fo'eign key defned on the label of the
a' f'om no to ni ir NOTNULL.

Rule 11 If the'e ir only one many to one 'elationrhip f'om 'elation Rl to an
othe' 'elation R2 and the fo'eign key of Rl to R2 ir defned ar NOTNULL, then
we an move the element fo' Rl to unde' the element fo' R2 ar a hild element.

Rule 12 If the'e a'e mo'e than one many to one 'elationrhip f'om 'elation Ro

to othe' 'elationr Rl, , Rk, then we an move the element fo' Ro to unde' the
element fo' Ri (1 : i : k) ar a hild element p'ovided the fo'eign key of Ro to
Rk ir defned ar NOTNULL.

By many to one relationship from relation Rl to R2, we mean that there is
one ar whih annot be deleted from node nl for Rl to node n2 for R2, and
there is no loop between nl and n2 in the referene graph. If we apply Rule 11
to the transformed XML shema Company XML, the elements for P'ojet and
Employee will be moved to under Dept as follows, the attribute dno with IDREF
type an be removed from both P'ojet and Employee elements.

<xs:element name="Dept" minOurs="0" maxOurs="unbounded">

<xs:omplexType>

<xs:sequene>

<xs:element name="dname" type="xs:string"/>

<xs:element name="ity" type="xs:string"/>

<xs:element name="DeptLo" minOurs="0" maxOurs="unbounded">

<xs:omplexType>

<xs:attribute name="dno" type="xs:IDREF"/>

<xs:attribute name="ity" type="xs:string"/>

</xs:omplexType>

<xs:key name="PK DeptLo"/>

<xs:seletor xpath="Dept/DeptLo/"/>

<xs:field xpath="�dno"/>

<xs:field xpath="�ity"/>

</xs: key>

</xs:element>

<xs:element name="Projet" minOurs="0" maxOurs="unbounded">

<xs:omplexType>

<xs:sequene>

<xs:element name="pname" type="xs:string"/>

<xs:element name="ity" type="xs:string"/>

</xs:sequene>

<xs:attribute name="pno" type="xs:ID"/>

</xs:omplexType>

</xs:element>

<xs:element name="Employee" minOurs="0" maxOurs="unbounded">

<xs:omplexType>

<xs:sequene>

<xs:element name="name" type="xs:string"/>

<xs:element name="ity" type="xs:string"/>

<xs:element name="salary" type="xs:int"/>

</xs:sequene>

<xs:attribute name="eno" type="xs:ID"/>

</xs:omplexType>

</xs:element>

</xs:sequene>

<xs:attribute name="dno" type="xs:ID"/>

<xs:attribute name="mgrEno" type="xs:IDREF"/>

</xs:omplexType>

</xs:element>

XML Shema ofers great fexibility in modeling douments. Therefore, there
exist many ways to map a relational database shema into a shema in XML
Shema. For examples, XViews [2] onstruts graph based on PK/FK relation
ship and generate andidate views by hoosing node with either maximum in
degree or zero indegree as root element. The andidate XML views generated
ahieve high level of nesting but sufer onsiderable level of data redundany.
NeT [8] derives nested strutures from fat relations by repeatedly applying nert
operator on tuples of eah relation. The resulting nested strutures may be use
less beause the derivation is not at the type level. Compared with XViews and
NeT, our mapping rules an ahieve high level of nesting for the translated XML
shema while introduing no data redundany provided the underlying relational
shema is redundany free.

4 Query Translation

In this setion, we disuss how XQuery queries are translated to orresponding
SQL queries. SQL is used to express queries on fat relations, where a join op
eration may be used frequently to join relations together; while XQuery is used
to express queries on elements whih ould be highly nested by subelements or
linked by IDREF, where navigation via path expression is the main means to
link elements of a doument together. As XQuery is more powerful and fexible
than SQL, it is hard to translate an arbitrary XQuery query to orrespond
ing SQL query. Fortunately, in VXER, the XML shema is generated from the
underlying relational database shema, therefore, the struture of the mapped
XML elements is no'malized. Given the mapping rules introdued in Setion 3,
we know the reverse mapping whih is ruial for translating queries in XQuery
to the orresponding queries in SQL.

As XQuery is still in its draft version, in this paper, we only onsider the
translation of basi XQuery queries whih do not inlude aggregate funtions.
The main struture of an XQuery query an be formulated by an FLWOR expres
sion with the help of XPath expressions. An FLWOR expression is onstruted
from FOR, LET, WHERE, ORDER BY, and RETURN lauses. FOR and LET
lauses serve to bind values to one or more variables using (path) expressions.
The FOR lause is used for iteration, with eah variable in FOR iterates over the
nodes returned by its respetive expression; while the optional LET lause binds
a variable to an expression without iteration, resulting in a single binding for eah
variable. As the LET lause is usually used to proess grouping and aggregate
funtions, the proessing of the LET lause is not disussed here. The optional
WHERE lause speifes one or more onditions to restrit the bindingtuples
generated by FOR and LET lauses. The RETURN lause is used to speify an
element struture and to onstrut the result elements in the speifed struture.
The optional ORDER BY lause determines the order of the result elements.

A basi XQuery query an be formulated with a simplifed FLWOR expres
sion:

FOR x1 in p1, ,xn in pn

WHERE

RETURN s

In the FOR lause, iteration variables Xl, , Xn are defned over the path
expressions Pl, , Pn. In the WHERE lause, the expression speifes on
ditions for qualifed bindingtuples generated by the iteration variables. Some
onditions may be inluded in Pi to selet tuples iterated by the variable Xi.
In the RETURN lause, the return struture is speifed by the expression s.
A nested FLWOR expression an be inluded in s to speify a rubque'y over
subelements.

4.1 The Algorithm

Input A basi XQuery query Qxquery against an XML shema Sh XML whih
is generated from the underlying relational shema Sh.

Output A orresponding SQL query Qsql against the relational shema Sh.
Step 1: make Qxquery anonial Let Pi defned in the FOR lause be the form
of IstePilI IstePik. We hek whether there is a test ondition, say ij in
stePij of Pi from left to right. If there is suh a step, let stePij be the form of
lij [ij], then we add an extra iteration variable Yij in the FOR lause whih is
defned over the path expression IlilI Ilij , and move the ondition ij to the
WHERE lause, eah element or attribute in ij is prefxed with $YijI.
Step 2: identify all 'elationr After Step 1, eah Pi in the FOR lause is now
in the form of IlilI Ilik, where lij(1 : j : k) is an element in Sh XML.
Usually Pi orresponds to a relation in Sh (lik mathes the name of a relation
shema in Sh). The mathed relation name lik is put in the FROM lause of
Qsql followed by the iteration variable Xi served as a tuple variable for relation
lik. If there is an iteration variable, say Xj , appears in Pi, replae the ourrene
of Xj with Pj . One both relations, say Ri and Rj , represented by Pi and Pj
respetively are identifed, a link from Ri to Rj is added in a temporary list
LINK. If there are nested FLWOR expressions defned in RETURN lause, the
relation identifation proess is applied reursively to the FOR lause of the
nested FLWOR expressions.
Step 3: identify all ta'get att'ibuter fo' eah identifed 'elation All target at
tributes of Qsql appear in the RETURN lause. For eah leaf element (in the
form of $XiIt) or attribute (in the form of $XiI�t) defned in s of the RETURN
lause, replae it with a relation attribute in the form of Xi.t. Eah identifed
target attribute is put in the SELECT lause of Qsql. If there are nested FLWOR
expressions defned in RETURN lause, the target attribute identifation pro
ess is applied reursively to the RETURN lause of the nested FLWOR expres
sions.
Step 4: identify onditionr Replae eah element (in the form of $XiIt) or
attribute (in the form of $XiI�t) in the WHERE lause of Qxquery, then move
all onditions to the WHERE lause of Qsql with a relation attribute in the form
of Xi.t. If there are nested FLWOR expressions defned in RETURN lause, the
ondition identifation proess is applied reursively to the WHERE lause of
the nested FLWOR expressions.
Step 5: ret the linkr between ite'ation va'iabler If there is any link put in the
temporary list LINK, then for eah link from Ri to Rj , reate a join ondition
between the foreign key attributes of Ri and the orresponding primary key
attributes of Rj and ANDed to the other onditions of the WHERE lause of
Qsql.

4.2 An Example

Suppose we want to fnd all departments whih have oÆe in Adelaide and we
want to list the name of those departments as well as the name and salary of
all employees who live in Adelaide and work in those departments. The XQuery
query for this request an be formulated as follows:

FOR $d in /Dept, $e in $d/Employee, $l in $d/DeptLo

WHERE $l/ity = "Adelaide" and

$e/ity = "Adelaide" and

$e/�dno = $d/�dno

RETURN

<Dept>

<dname> $d/dname </dname>

<employees>

<name> $e/name </name>

<salary> $e/salary </salary>

</employees>

</Dept>

Given this query as an input, the following SQL query will be generated:

SELECT d dname, e name, e salary

FROM Dept d, Employee e, DeptLo l

WHERE l ity = "Adelaide" and

e ity = "Adelaide" and

e dno = d dno and

l dno = d dno

5 XML Douments Generation

As seen from the query translation algorithm and example introdued in the
previous setion, the translated SQL query takes all leaf elements or attributes
defned in an XQuery query RETURN lause and output them in a fat relation.
However, users may require a nested result struture suh as the RETURN
struture defned in the example XQuery query. Therefore, when we generate
the XML result douments from the translated SQL query result relations, we
need to restruture the fat result relation by a g'ouping operator [9] or a nert
operator for 2 relations, then onvert it into XML douments.

Similar to SQL GROUP BY lause, the grouping operator divides a set or
list of tuples into groups aording to key attributes. For instane, suppose the
translated SQL query generated from the example XQuery query returns the
following result relation as shown in Table 1. After we apply grouping on the
relation using dname as the key, we have the nested relation as shown in Table
2 whih an be easily onverted to the result XML doument as speifed in the
example XQuery query.

dname name salary

development Smith, John 70,000

marketing Mason, Lisa 60,000

development Leung, Mary 50,000

marketing Lee, Robert 80,000

development Chen, Helen 70,000

dname name salary

development Smith, John
Leung, Mary
Chen, Helen

70,000
50,000
70,000

marketing Mason, Lisa
Lee, Robert

60,000
80,000

Table 1. latRelation Example Table 2. Nested Relation Example

6 Conlusion and Future Work

This paper introdued the arhiteture and omponents of a virtual XML database
engine VXER. VXER presents a normalized XML shema whih preserves in
tegrity onstraints defned in the underlying relational database shema to users
for queries. Shema mapping rules from relational to XML Shema were dis
ussed. The Query translation algorithm for translating basi XQuery queries
to orresponding SQL queries was presented. The main idea of XML doument
generation from the SQL query results was also disussed.

We believe that VXER is efetive and pratial for aessing relational
databases via XML. In the future, we will build a prototype for VXER. We
will also examine the mapping rules using our formal study of the mapping from
relational database shema to XML shema in terms of funtional dependenies
and multivalued dependenies [12, 13], and investigate the query translation of
omplex XQuery queries and omplex result XML doument generation.

Referenes

1. S. Abiteboul, P. Buneman, and D. Suiu. Data on the Web: From Relations to
Semistrutured Data and XML. Morgan Kaufmann Publishers, 2000.

2. C. Baru. Xviews: Xml views of relational shemas. In Proeedings of DEXA
Workshop, pages 700�705, 1999.

3. S. Boag, D. Chamberlin amd M. ernandez, D. loresu,J. Robie, J. Simeon, and
M. Stefanesu. XQuery 1.0: An XML Query Language, April 2002. W3C Working
Draft, http://www.w3.org/TR/2002/WD-xquery-20020430/.

4. T. Bray, J. Paoli, C. Sperberg-MQueen, and E. Maler. Extensible Markup
Language (XML) 1.0 (Seond Edition), Otober 2000. W3C Reommendation,
http://www.w3.org/TR/REC-xml.

5. M. Carey, J. Kiernan, J. Shanmugasundaram, E. Shekita, and S. Subramanian.
Xperanto: Middleware for publishing objet-relational data as xml douments. In
Proeedings of VLDB, pages 646�648, 2000.

6. D. allside. XML Shema Part 0: Primer, May 2001. W3C Reommendation,
http://www.w3.org/TR/xmlshema-0/.

7. M. ernandez, W. Tan, and D. Suiu. Silkroute: Trading between relations and
xml. In Proeedings of WWW, pages 723�725, 2000.

8. D. Lee, M. Mani, .Chiu, and W. Chu. Nesting-based relational-to-xml shema
translation. In Proeedings of the WebDB, pages 61�66, 2001.

9. J. Liu and C. Liu. A delarative way of extrating xml data in xsl. In Proeedings
of ADBIS, pages 374�387, September 2002.

10. J. Shanmugasundaram, J. Kiernan, E. Shekita, C. an, and J. underburk. Query-
ing xml views of relational data. In Proeedings of VLDB, pages 261�270, 2001.

11. J. Shanmugasundaram, E. Shekita, R. Barr, M. Carey, B. Lindsay, H. Pirahesh,
and B. Reinwald. EÆiently publishing relational data as xml douments. In
Proeedings of VLDB, pages 65�76, 2000.

12. M. Vinent, J. Liu, and C. Liu. A redundany free 4nf for xml. In Proeedings of
XSYM, September 2003.

13. M. Vinent, J. Liu, and C. Liu. Redundany free mapping from relations to xml.
In Proeedings of WAIM, August 2003.

